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Abstract: A sound engineering practice for improving quality and productivity
is to design quality into preducts and processes. The ideas of (7. Taguchi about
parameter degign were introduced in the US some ten years ago. Despite some
strong controversy about some aspects of it, they play a vital role in the concept
of robustness in the design of industrial products and processes. In this paper,
we present a new methodology for designing products and processes that are
robust to variations in environmental or intéernal variables. First, a tentative
model for the response as a function of the design and noise factors is assumed.
This model is then estimated uwsing a single design matrix and the expected
value and variance of the response are calculated over the space of the design
factors. Finally, the best setting of the parameters values can be located in
a newly developed bivariate plot where the distance to the target is plotted
against the variance of the response.

Keywords and phrases: Design of experiments, distance-variance plot, qua-
lity improvement, robust product, variation reduction

20.1 Introduction

Faced with the old view of guality control by means of final inspection or the
classical one of Statistical Process Control, we can designate as the modern
method one that guarantees better economy and quality of a product. This
would apply to the design of products such that their features are maintained
at a desired level despite adverse factors in their production and utilization.
These products are said to be robust. In this paper, we present a new
methodology for the selection of values for the parameters used in the design
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of robust products.

20.2 Background

Techniques for the robust design of products were first introduced in Japan
by the engineer Genichi Taguchi (1984, 1986). The method bearing his name
iz well known and has been used widely. One of the steps invelved in using
the Taguchi method is the selection of design factors (parameters). This in
essence consists of setting up a plan of experimentation where the value of
some quality characteristic (response) is measured for a known combination
of design factor values and also the so-called noise factors (that influence the
response but cannot be easily controlled at a fixed value). From the results
obtained during experimentation, one can determine the set of values for the
design factors that elicit satisfactory values of the response, independent of the
values taken by noise factors.

The method proposed by Taguchi for obtaining the optimal design factor
value is through the use of product matrices in the design of the experimental
plan and the utilization of signal-to-noise ratios in the analvsis of the results
[See Hunter (1985), Kacker (1985), Ross (1988), Taguchi and Phadke (1984)].

Despite being well-received, the contributions of Taguchi towards product
design have some controversial aspects. Although in some cases the number of
experiments that one plans to carry out is justifiably necessary for obtaining
precise information, in most other cases, experimenting on each of the conditions
of the product matrix would require an effort and dedication of resources that
may be unnecessary and therefore could be reduced. [Shoemaker et al. (1991)].
Also the statistics and the associated procedures used are not very intuitive. It
has been demonstrated |[Box and Fung (1986)] that the statistical techniques
used for analyzing the results obtained are not very adeguate. For related
discussion see also Kacker et al. (1991), Maghsoodloo (1990) and Tort-Martorell
(1985).

20.3 Description of the Problem

We consider 3 types of variables that influence the quality characteristics of a
product:

i) Those corresponding to parameters related to the design of the product,
whose values are maintained constant at the desired levels. This type
of variables is known as “constant design factors™ or, simply, “design
factors”.
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ii} Those outside the design of the product that show a certain variability
around their average value. Typical examples of this type of variables
are: the ambient temperature, the degree of humidity, the voltage of
the electricity supply, etc. These variables are known as “external noise
factors”,

ili) The variables corresponding to parameters related to the design of the
product (as in type i), whose nominal value can be selected by the de-
signer. In practice, however, they show a certain variability around the
value selected. An example of this type of variable is the value of the
resistance that is placed in a circuit: the designer chooses its value, for
example 10 12, but in practice it will not be exactly 10, but between 9.5
and 10.5 €1. These variables are known as “design factors affected by
internal noise” or simply “internal nolse factors™.

In the design of a product it will not always be necessary to consider the two
tyvpes of noise factors. In some cases the external noise factors will suffice, and
it is possible to consider all the design factors as constant. In others, it will be
sufficient to consider solely the variability of some design factors.

The issue that we wish to addess is the determination of the nominal val-
ues of the design factors so that: 1) the response shows minimum variability
around its average value, neutralizing as far as possible the variability trans-
mitted by the noise factors and, 2) the average value of the response is as near
as possible to its objective value. - For solving this problem we outline below
a 4-stage methodology in which it is assumed that the functional relationship
linking response with the factors that influence it is not known, and it is there-
fore necessary to deduce an approximation experimentally. If this relationship
is known, stages i) and ii) should be skipped, since thev attempt to find an
approximation to the unknown functional relationship.

20.4 Proposed Methodology

The proposed methodology is based on the concepts developed by G. Taguchi
(1984, 1986) for the design of robust products, and on later analysis and pro-
posals on this subject, especially the ones by Box and Jones (1990). It consists
of the following steps:

i) Assume a tentative model for the response.

ii) Estimate the model parameters by running a factorial or fractional fac-
torial design. If the model is quadratic, a central composite design is
used.
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iii) Analyeze the estimated model, deducing the expressions for the variance
and the expected value of the response.

iv) Calculate the expected value and the variance of the response for a large
set of combinations of design factor values. Draw a bivariate plot of the
optimal distance to the target versus the variance of the response and
obtain the optimum combination of values for the design factors.

The use of a spreadsheet program (on a PC) facilitates the calculations and the
plotting of the data. Short descriptions of the steps mentioned above are given
in the next sections,

20.4.1 Hypothesis about the model for the response

The ohjective is to establish a hypothesis about the existing relation between
the response and the factors (design factors, and noise factors) which must sat-
isfy the following requirements: 1) Explain satisfactorily the behaviour of the
response, and ii) Facilitate casy estimation of the parameters and the subse-
quent analysis. Below we discuss 2 tvpical cases:

1. The noise factors are exclusively of the “external noise™ type: in this
case, the transmission of variability of the noise factors to the response can be
neutralized (as far as possible) using the interaction of the neise factors with
the design factors ( Figure 20.1). Thus it is sufficient to use models of the type:

m=1 m
W= .'jﬂ"‘"Z'?Ia + Z Z Bazize + Z'hzj + Z E LT
=] k=il _rnl J=1 f=§41
T Zza.j.m,ﬂ (20.1)

i=1 =1

where y: response, x;: design factors (constants), z: noise factors (random
variables) and £: not explained by the model,

2. The noise factors are exclusively of the internal tvpe: In this case, the
transmission of variability to the response can be reduced through the mutual
interactions of the design factors, but also by using the possible non-linear
relationship between the factors affected by variability and the response (Figure
20.2). In this case, it is advantageous to use models of the type:

k=1 &k

y= o+ L.ﬂ.x.+£3.. +3 ¥ Byza;+e (20.2)

=] g=i41

where xy....,r; represent design factors affected by internal noise. See Box
and Jones (1990) and Jones (1990) for a detailed discussion on this area.
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Figure 20.1: The interaction of £ with = allows us to choose the values of z
{in this case it will be the one coded with "4") which reduces the effect of
the variability of =
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Figure 20.2: The quadratic relation between x and y allows us to reduce the
transmission of variability to y by choosing the right values of = (in this
case, the greatest possible value)
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20.4.2 Estimation of the model parameters

The model parameters can be estimated by running a fractional design. If
the model is of first order, a design with 2 levels will be sufficient, but if it
is quadratic, it would be necessary to use a central composite design [Box
and Draper (1987) and Myers (1976)] or a three level design. In either case,
the experimental conditions are formulated throughout using only one design
matrix, that we will call a combined matrix, which includes both the contral
factors and the noise factors. This set-up allows for greater flexibility over the
Taguchi product matrix for the estimation of the important effects without
confounding. The following example shows this advantage.

Example 1. Let us assume that we have 3 design factors A, B, C and 3
external noise factors O, P and Q. One possible combined matrix is the one
that has as generators: C' = AR for the inner orthogonal array, and @ = OP
for the outer orthogonal array, giving the following defining relation:

f=ABC =0PQ = ABCOPQ

that corresponds to a fourth of a fraction of a complete factorial design of 2% and
requires the same number of runs as in the product matrix of Taguchi. From
the last defining relation we can see that the main effects cannot be estimated
unless we assume that all two factor interactions as non significant. If this
assumption cannot be made but we need to estimate the main effects, then the
number of experiments required in a Taguchi product matrix is much larger.

However, a combined matrix with the following generators: F = ABC and
Q@ = BCO, leads to:

I = ABCO = BCOQ = APOQ

and consequently we can estimate all the main effects free of two factor inter-
actions. This feature is especially useful when it is not required to estimate all
the model parameters. For instance, if we are only interested in minimizing the
response variance, all that is required is to estimate the effects of noise factors
and the interactions with the control factors. This will be explained in more
detail im the next section.

Shoemaker et al. (1989) and Box and Jones (1990) have discussed in detail
the advantages of the combined matrix. They also proposed the possibility of
using special designs like Addelman or Box-Behnken type designs.
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20.4.3 Model analysis: Response variance and expected value
First order models, with only external noise factors

This 15 a model of the tvpe shown in equation (20.1) and minimising the vari-
ability of the response is achieved by minimising the following expression:

i i K] m=1 m
vru1=z:(wj +E:6u-z;-) Vig)+ 3, X nuViza)+Vie)

yml i=1 J=1 lm§+1

Considering that £ is independent of any factor, and that all factors included
in the model have been previously coded to have values between —1 and +1,
and making the hypothesis that the factors that can't be controlled (z) have a
uniform distribution in that interval, we get the following expression:

1 m n 1 M=l m
Vivi =33 ('r; + Zﬁazi) +tg2 X Vi) (203
F=1 =1 F=1 I=j+1

Example 2. Let us assume that we want to minimise the variability of a
quality characteristic (response) that can be expressed by the following model:

y=11+2x =15z + 3xz
In this case, we have to minimise the following expression:
Vi) =(=15+ az)*Vi(z)

The value of T that minimises Viy) is £ = 0.5
Example 3. Consider the following model:

y=18=52) 4+ 30— 5 + 2+ 2no0 — 20 + 2.5m 2 + 251 20 + By — 1o
To minimise the variability of y. we need to minimise the following expression:

Vi) = (=1425x + 222)V(z1) 4 (1 + 2.3z — 22)*V(2) + 4V (222)
(1/3)[(=1 + 2.52; + 224)% + (1 + 2.5a; — x9)° + 4/9

Setting the derivatives of V{(y) with respect to x; and r3 to 2ero we obtain:
z; = —0.13 and r; = 0.67. These will be the optimal values of x; and
because any other pair of values would produce a greater variability in the
TESpOnSse Y.

In the previous examples, the values of the controllable factors which min-
imise the variability of the response were found. But this was done without
taking into account the mean value of the response. However, the response
will have an optimal value (that we shall call 7). We will also be interested in
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minimising the distance between the mean value of the response and its optimal
value. Therefore, we have to minimize the following expression:

" n=1 n
T—Ey)=1=05+Y B+ d. ¥ Baxirs

=] i=]1 ki1
where: E(2) =0 and E(z) = 0.
Example 4. Given the simple mode] in Example 2:

y=11+2z =15z + 32z

we want to minimise the distance between the mean value of the response and
its optimal value {assuming a value of 7 = 10). For this we should find the
value of = that minimises (for absolute values) the following expression:

Dir)=10—-11-2z

It can be easily seen that the optimal value of z iz —0.5 because for this value
we obtain D(r.z) =0
In general, the distance to the optimum will be:

Dir,g) = - Ely) (20.4)

Second order models, with only internal noise factors

In this case the model corresponds to the t}pe shown in equation (20.2) and
hence we have:

k—
Vi) = (&+me.+zﬂ.ﬂ+2 3 B z,) + V()

=] y=utl

When there iz only one design factor, a linear approximation of the variation
transmitted to the response takes the form:

V(y) = V(z){dy/dz)* + V(e)
In general, with k design factors we obtain:

Viy) = Z V(z:)(@f /02 + Ve) (20.3)

where the value of ¥ (£) may be ignored as it only adds a constant to V(y), and
does not affect the conclusions obtained.
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Since E{g) = 0 and the r; (design factors) can be considered random vari-
ables independent of £, with a distribution: x; ~ N(uy, o), the mathematical
expectation for y at any defined point is:

Ely) = o +Eﬁ.£im + Eﬂuﬂ{fi + E Z BiyElzi)Elz;) ,

fm] i1
mnid:
Eiz*) = Viz) + E*{z) .
Then:
k-1
Ely) = *Z:‘J.E{ra}+z.'3..'-’nr::.J+E AaElx) 4y 5: BiyElzi)Elz;)
i=] =1 i=1 =i+l

20.4.4 Choosing the optimum values for design factors:
the distance-variance plot

As shown previously, the value that minimises the response variability is differ-
ent from the one that minimises its distance to the optimum.

There is no general rule that can facilitate the selection of an optimal value
for ¢, because in some cases we would like to minimise the response variability
even if there is a large distance to the target and in other cases do the reverse.

Looking at the model used in examples 2 and 4, a way of selecting the value
of r consists of first ealculating the values of E(y) and V{y) for every possible
value of the control factor. Then, on examination of the calculated values, it is
possible to select the value of r that best fits the requirements of the designer.

A simple method that can be generalised for more complicated models for
the selection of the optimal value of r, is given below. It is possible to cal-
culate and display graphically all the relevant data by using any spreadsheet
programme running on a PC. The steps involved are:

1. In eolumn A of the spreadsheet, enter the values of ¢ between the intervals
—1 and 41 with increments of 0.1 (this increment could be reduced).

2, In column B, calculate the variance of the response for each value of =,
using formula (20.3).

3. In column C, calculate the distance to the target using formula (20.5).

An illustration of the method is shown in Table 20.1. The model parameters and
the optimal value for the response (v) are entered in column G, so that if any
of the data is changed, V(y) and the distance to the target are automatically
re-caleulated.

From this spreadshect tabulation, a bivariate plot of the distance to the
target and the variance can be generated as shown in Figure 20.3. Note that
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every data point plotted, corresponds to a value of . From Figure 20.3, one
can observe that there is a value of x for which the varlance equals zero and the
distance to the target is equal to one. There is also an x for which the distance
equals zero and the variance equals 0.75. The plot in Figure 20.3 has all the
information required in order to select the data peint that corresponds to the
values of the design factors that best fit the objectives of the designer.

The identification of which value of r corresponds to each one of the plotted
data points is simple. In this case, it can be done by counting in increments
of 0.1 from the data points that correspond to * = —1 and z = 41. In
other cases, they can be estimated either from their coordinates or by using
software packages such as STATGRAPHICS that allow for the identification of
any characteristic of a plotted point by just placing the cursor on it.

Additionally, as shown above, this kind of plot can be used for any number of
design factors and noise factors. Taking the model used in Example 3, there are
two design factors that are both between the interval —1, 41 with an increment
of 0.1. It is possible to have 21 x 21 = 441 combinations of these for which we
can calculate the response variance and the distance to the optimum using the
spreadsheet programme (see Table 20.2).

The distance-variance plot obtained from this computation is shown m
Figure 20.4. From the figure we get 7 = 24. The plotted data point that
corresponds to a minimum variance has been highlighted with a box around it
and the values of z for this are 21 = —0.1 and z3 = 0.6.

20.5 Conclusions

The most important aspects of this method may be summarized in five points:

i. When the functional relationship between the response and the factors
is not known it can be found through the experimentation using a single
design matrix that includes both, noise and design factors. This provides
sensible estimates of the effects and a reduction in the number of experi-
ments [In agreement with the proposals of Shoemaker et al. (1991)].

ii. The proposed method does not include abstract concepts, and is easily
understood, used and interpreted even by people with little knowledge of
mathematics or statistics.

iii. The calculations are simple and a spreadsheet program for personal com-
puters (e.g. LOTUS) is the only tool used in the application of this
method.

iv. The information is presented as a graph (it is always a bivariate diagram)
that clearly summarizes the information available in order to make the
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most suitable decision in every different case.
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v. The method is valid for the design of robust products subject to either
internal or external noise.

Table 20.1: Spreadsheet caleulation to obtain the values for variance and the
distance to the target for examples 2 and 4

A B C D E F G H

1 X Var(Y) Dist.
2 =] 6.75 2 cte 11
3| =048 h.BR 1.8 T 2
d4 | =05 507 1.6 z =L&
5| =07 4.32 14 Tz 3
6| —0.6 J.63 1.2
¥ -05 3 1 tau 10
8| -04d 243 0.8
9| =03 1.92 0.6

10 | =03 1.47 0.4

11| =01 .08 0.2

12 0 0.75 0

13 0.1 048 =02

14 0.2 027 =04

15 0.3 012 =06

16| 04 003 -08

17 0.5 1] -1

18 0.6 003 -—-1.2

19 0.7 012 =14

) 0.8 027 =14

21 0.5 048 =18

2 1 0,75 =2
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Figure 20.3: Distance-Variance plot for examples 2 and 4

Table 20.2: The first row of the table of values for the model in example 3

A B C D E F G

1| 1 2 Vg Dist.
2|-1 -1 106 5 ete 15
i|-1 =03 9.9 4.9 rl =5
4| =1 -08 8.3 4.8 o 3
5| -1 -07 BT 4T S |
6| -1 -06 B1 4.6 =2 1
7l-1 05 75 45 xlr? 2
8| -1 =04 7.0 4.4 z1=2 =4
gl-1 -03 65 43 izl 25
0]-1 -02 &1 42 12 2.5
1| =1 =01 57 4.1 x2=z1 2
12| =1 1] 5.3 4 x2z2 -1

13| =1 0.1 4.9 10
4|-1 03 46 38 tan 24

15| -1 04 43 37
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Figure 20.4: Distance-variance plot for example 3
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