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Unusual-event processes for count data

Wanrudee Skulpakdee! and Mongkol Hunkrajok?

Abstract

At least one unusual event appears in some count datasets. It will lead to a more
concentrated (or dispersed) distribution than the Poisson, gamma, Weibull, Conway-
Maxwell-Poisson (CMP), and Faddy (1997) models can accommodate. These well-
known count models are based on the monotonic rates of interarrival times between
successive events. Under the assumption of non-monotonic rates and independent
exponential interarrival times, a new class of parametric models for unusual-event (UE)
count data is proposed. These models are applied to two empirical applications, the
number of births and the number of bids, and yield considerably better results to the
above well-known count models.

MSC: 62J99, 62M05, 62P99.

Keywords: Poisson count model, Gamma count model, Weibull count model, Conway-Maxwell-
Poisson count model, Faddy count model.

1. Introduction

Count data regression analysis is a collection of statistical techniques for modeling and
investigating the conditional count distributions of count response variables given sets of
covariates. The conditional-variance-mean function of these distributions can be classi-
fied into two different categories: linear and non-linear.

1. If the distributions are equidispersed (variance = mean), this function is linear.

2. If the distributions are overdispersed (variance > mean), this function is either
linear or non-linear.
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3. If the distributions are underdispersed (variance < mean), this function is either
linear or non-linear.

4. If the distributions are over-, under-, and equidispersed, this function is non-linear.

A renewal process is a counting process. Its times between successive events are in-
dependent and identically distributed with a non-negative distribution (Ross 2010). The
primary assumption of the Poisson model is that the times between events are expo-
nential. It follows that the Poisson model is equidispersed, and the Poisson regression
model has a linear conditional-variance-mean function. The exponential distribution
replaced by a less restrictive non-negative distribution such as the gamma and Weibull
distributions leads to the gamma (Winkelmann 1995) and Weibull (McShane et al. 2008)
count models. They allow for both overdispersion and underdispersion. The gamma and
Weibull regression models have linear conditional-variance-mean functions when the
additional parameter () equals 1, that is, the Poisson regression model. Furthermore,
they have nearly linear conditional-variance-mean functions shown in Figures 1(a) and
1(b), although o does not approach 1.

The Conway-Maxwell-Poisson (CMP) model was originally introduced by Conway
and Maxwell (1962). In contrast to the above models, the CMP model is not derived from
an underlying renewal process. The proof can be found in the Supplementary Material.
Surprisingly, however, the graphs in Figures 1(a) and 1(c) of the conditional-variance-
mean functions for the gamma and the CMP are hardly distinguishable. A plausible
explanation for this similarity is the equality of their approximate variance-mean ratios.
These ratios are equal to a constant 1 /o (Winkelmann 1995, p. 470; Sellers and Shmueli
2010, p. 946). Likewise the gamma and Weibull count models, the CMP model consists
of the rate and dispersion parameters. Thus, it allows for both over- and underdispersion.

As previously mentioned, the conditional variance and mean of the above well-
known regression models are (nearly) linearly related. In some applications, these re-
gression models are either unsatisfactory or inappropriate when the sample relative fre-
quency distribution is created as a mixture of distributions whose relationship between
the variance and the mean is non-linear.

The common assumption that the rates of interarrival times are equal may cause a
(nearly) linear conditional-variance-mean function. One potential solution to this prob-
lem is to allow the unequal rates. Faddy (1997) suggested the generalization of the
Poisson process 4, = A (b+n)%*, n=0,1,,2,..., in which the rate at which new events
occur depends on the number of events. The rate sequence of the Faddy (1997) pro-
cess is either non-decreasing or non-increasing. The Faddy (1997) regression model
has both (nearly) linear and non-linear conditional-variance-mean functions shown in
Figures 1(d), but it displays only one of over-, under-, and equidispersion. There-
fore, this regression model is either unsatisfactory or inappropriate when the sample
relative frequency distribution is created as a mixture of over-, under-, and equidis-
persed distributions whose relationship between the variance and the mean must be non-
linear. Note that the conditional variances and means in Figure 1 were computed in R
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Figure 1. Graphs showing the linear and non-linear functions of variance and mean. The Faddy
(1997), DUE (y = {0,1}), and DUE (y = {2,3}) models present the cases in which b, oy, and
o3 are 1 x 10720,0.687, and 0.687, respectively.
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(R Core Team 2019) by the dCount—conv-bi function in the Countr package (Khar-
rat and Boshnakov 2018) for the gamma and Weibull count models, the dcmp function
in the COMPoissonReg package (Sellers, Lotze and Raim, 2018) for the CMP count
model, and the Faddyprob.general function in the CountsEPPM package (Smith
and Faddy 2018) for the Faddy (1997) count model.

The limitation that the above regression models present only one dispersion type may
be easily removed by allowing for non-monotonic rate sequences. The two examples are
the single-unusual-event (SUE (Y = {2})) and double-unusual-event (DUE (y = {2,3}))
models shown in Figures 1(f) and 1(h). Their curves corresponding to o # 1 always
cross the 45-degree (Poisson) lines. Thus, these models can fit a dataset that is a mixture
of over-, under-, and equidispersion. The development and exploration of a new class
of unusual-event (UE) models is the main objective of the present article. Note that the
SUE (y = {0}) model is a special case of the Faddy (1997) (see Figures 1(d) and 1(e)),
as described later.

The rest of this article is organized as follows. Section 2 presents the UE models
and their properties, with additional details provided in Appendices A and B at the end
of the paper. Section 3 discusses numerical strategies for computing UE probabilities.
Section 4 provides and analyses the experimental results from the number of births and
the number of bids. Finally, Section 5 concludes the paper.

2. Unusual-event models

Let X () be a discrete random variable, representing the total number of events that occur
before or at exactly time 7. {X(¢); r > 0} is a pure birth process with X (0) = 0 and birth
rates A, (n > 0). The probabilities P,(t) = P{X(¢t) =n | X(0) =0}, forn =0,1,2,...,
satisfy the Chapman-Kolmogorov forward differential equations (Cox and Miller 1965),
namely

Py(1) = —2oRo(1),
Py(t) = =AuPu(t) + Ap-1Poi (t), n>0, (1)

with boundary conditions Py(0) = 1 and B,(0) =0, n > 0.

Different distributions correlate with different birth rate sequence A, patterns. The
simple Poisson process, which has a constant rate parameter A, restricts that the variance
equals the mean. The birth rate, which depends on the number of events, may allow for
overdispersion and underdispersion. Increasing the number of parameters in the process
almost always improves the goodness of fit (as assessed by the log-likelihood function),
but it may cause overfitting. Thus, the rate A, must be a parametric function of n, as
stated by Faddy and Smith (2008). Examples of pure birth processes follow below.

1. A sequence of rates
A=A, forn=0,1,2,..., A>0,

exhibits the Poisson distribution, which is a one-parameter count model.
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2. A sequence of rates

P A forn>0
" 1A forn=0, AandAy >0,

exhibits the Faddy (1994) distribution, which is a two-parameter count model.

3. A sequence of rates

A forn>1
A=< A forn=0
M forn=1, A, Ay, andA; >0,

exhibits the extended Faddy (1994) distribution, which is a three-parameter count
model.

4. A sequence of rates
A=Ab+n)*, forn=0,1,2,... A>0, b>0,andax <1,
exhibits the Faddy (1997) distribution, which is a three-parameter count model.

The Faddy (1994), extended Faddy (1994), and Faddy (1997) models have greater
flexibility than the Poisson model at the cost of additional parameters. Covariates can
be incorporated into these models by setting A as a function of the linear predictor By +
Bixji + ...+ Brxjr, where xjx, k =1,...,r, is the jth observation of the kth covariate, and
Bi, 1 =0,...,r, is the Ith unknown parameter to be estimated. The rates A, (n > 0) of the
Poisson and Faddy (1997) distributions depend on the covariates, but the rates Ap and 4,
of the Faddy (1994) and extended Faddy (1994) do not. One might argue that A and A4
can be written as a function of the linear predictor. However, the approximately doubled
(Faddy (1994)) and tripled (extended Faddy (1994)) parameters comparing to the above
two distributions may lead to overfitting. Perhaps the rate sequences of the Faddy (1994)
and extended Faddy (1994) can be easily modified as follows:

A for n>0
""" lor forn=0, ogandA >0,

and
A for n>1

A=<X opA for n=0
oA forn=1, apy, a;,andA > 0.
We call A the base rate. These modified rate sequences can avoid the risk of overfit-

ting, and the rates A,, depend on covariates. In other words, these distributions with the
fewest numbers of parameters occur when A is a function of the linear predictor.
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We call the pure birth process with this pattern of the rate sequences the unusual-
event (UE) process because at least one rate differs from the base rate A. It is defined
as

ln:{l for ngé'y:{’yla’}/})“'a’}/m} (2)

ayA fornevy,

where %; is a non-negative integer, and o, >0, i =1, 2, ... ,m. We call o, the shape
parameter. The UE process permits a wide range of regression models for count data, in-
cluding the combinations of distributions with either one or three dispersion types. These
possibilities are illustrated using the single-unusual-event (SUE) and double-unusual-
event (DUE) processes.
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Figure 2. SUE (Y= {2} and A = 2.7) distributions with unequal means and dispersions.

2.1. SUE models

Perhaps the simplest example of UE processes is a SUE process with

),n—{l for n¢ y={y}

oyA forn=vy. )
For oy = 1, the SUE process simplifies to the Poisson process. It is noted that the
SUE distribution is characterized by independently exponential distributed interarrival
times. Figure 2 compares the probability functions of the SUE (Y = {2} and A = 2.7)
distribution for five values of . It is more concentrated (a < 1) or more dispersed
(0 > 1) than the Poisson distribution (o = 1). The overdispersion case ¢, = 2.8 shows
a probability distribution with two distinct modes (1 and 3) referred to as a bimodal
distribution.
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The SUE (y = {2}) probability function is given by

n_—At
M for n <2
n! )
e 2 (1= aa)20) )
Pn(t): (At) e A I;OW for n=2 (4)
n _—At . ((I_OCZ)}“)i
Otz(lt) e ;)w for n > 2.

The derivations of SUE probability distributions can be found in Appendix A. For n < 2,
the SUE (y = {2}) probability function is Poisson. It is not a function of o, and thus the
probabilities in Figure 2 are equal at n = 0 and 1. For n = 2, the SUE (y = {2}) proba-

2 At o i
bility function can be simplified to % +(1—0p) (A1) e ‘ZO % The first
=

term is the Poisson probability function for n = 2. Since the second term is positive
(p < 1) and negative (ap > 1), the SUE (y = {2}) probability value is greater and
smaller than the Poisson (o = 1) , respectively.

The Faddy (1994) process is equivalent to the SUE (y = {0}) process, but only when
their regression models are not considered. Therefore, the proof of the Faddy (1994) by
direct calculation that for # > 0,

Var{X(t)} > E{X(¢)} if 10 =o0p <1

and

Var{X(t)} < E{X(t)} if };0 =0y>1,

is still correct for the SUE (y = {0}) process. Alternatively, op < 1 and o > 1 re-
sult in non-decreasing and non-increasing rate sequences, which provide overdispersed
and underdispersed SUE (y = {0}) distributions, respectively (see Figure 4(a)). These
properties were conjectured by Faddy (1994) and proved by Ball (1995). Note that the
non-increasing and non-decreasing rate sequences mean A, 1 < A, and 4,1 > Ay, re-
spectively.

It is worth mentioning that the SUE (Y = {0}) model is a special case of the Faddy
(1997) model (see Figures 1(d) and 1(e)). Let us consider a rate sequence of the Faddy

(1997) model in which the parameter b is given in the form 6‘17‘, where 0 < o < 1. It
can be shown that

n A f
lim A, = lim A (o or n>0

a
<G‘a‘ +n) = 2
a0~ a0~ Z=0aA forn=0, p=52>1,

1
o
and

o
lim A, = lim A (oﬁ +n> _

a—0t a—0t

A for n >0
oA =oA forn=0, 0<op=0<1.
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Figure 3. DUE (y = {2,3}, A = 2.7, and oy = 0.8) distributions with unequal means and
dispersions.

Hence, the SUE (y = {0}) models with ap > 1 and 0 < o < 1 are the limiting cases of
the Faddy (1997) model. They arise when « approaches 0 from the left and the right,
respectively.

Figures 4(a)-4(d) show graphs of the variance-mean ratio with ¥y = 0 — 3 for various
values of 4 and . oy # 1, ¥ > 0, results in a non-monotonic rate sequence, which
provides over-, under-, and equidispersed SUE (y = {y > 0}) distributions (see Figures
4(b)-4(d)). For fixed o, the three dispersion types of the SUE models are defined by
the base rate A, in contrast to the gamma, Weibull, CMP, and Faddy (1997) models.
We conjecture that this property holds for any non-monotonic rate sequence of SUE
processes.

2.2. DUE models

Perhaps the simplest example of DUE processes is a pure birth process with

A for ngy={y, y+1}
A= 1q O for n=y 35)
OyriA for n=7y+1.

For oy # 1 and oty = 1, the DUE (y = {y,y+ 1}) process simplifies to the SUE (y =
{y}) process. We consider the DUE count model in which the rates, A, and 4,1, of two
consecutive events are not equal to the base rate. This phenomenon appears to occur in
the two empirical applications, the number of births and the number of bids, shown in
Tables 4 and 5. Figure 3 compares the probability functions of the DUE (y={2,3}, A =
2.7, and o, = 0.8) distribution for five values of a3. It is more concentrated (o3 < 1)
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or more dispersed (a3 > 1) than the SUE distribution (a3 = 1). The DUE (a3 = 2.8)
distribution is a bimodal distribution whose modes are 2 and 4. The bimodal distributions
of the SUE (y= {2}, A =2.7, and o, = 2.8) and the DUE (y = {2,3}, A =2.7, op =
0.8, and o3 = 2.8) suggest that we should expect a UE distribution to be a multimodal
distribution, which is a discrete probability distribution with two or more modes.

The DUE (y = {2,3}) probability function is given by

n_—Ait
(M)n’e for n<2
0w e (L= Ar) _
(At)"e ;)704_”)! for n=2
n _—A - Ci tl o
o (At)"e ll;)(i—i—n)! for n=3
n —At )i
azocg (At)"e Z l+n) for n> 3,

i .
where ¢; = ¥ (1—0p)* (1 —az)'*. The derivations of DUE (¥ = {y, 7+ 1}) probabil-
k=0

ity distributions can be found in Appendix B. For n < 3, the DUE (y = {2,3}) probabil-
ity functions are not dependent on o3, and thus the probabilities in Figure 3 are equal at
n=20, 1, and 2. For n =3, the DUE (y = {2,3}) probability function can be simplified

to oty (A1)* e M ): (@ H‘g JAs) +on(1—oa) (Ar)te ™ Z < M . The first term is the SUE

(y=A12} probablhty function for n = 3. Since the second term is positive (03 < 1) and
negative (03 > 1), the DUE (y = {2,3}) probability value is greater and smaller than the
SUE (y = {2}), respectively.

Figures 4(e)-4(h) show graphs of the variance-mean ratio with ¥ = 0 — 3 for various
values of A and ay. A non-decreasing rate sequence with g < oy < 1 provides only
overdispersed DUE (y = {0,1}) distribution, and a non-monotonic rate sequence with
op > oy < 1 produces over-, under-, and equidispersed DUE (y = {0, 1}) distribution
(see Figure 4(e)). ¥ # {0,1} results in a non-monotonic rate sequence, which provides
over-, under-, and equidispersed DUE (y = {y,y+ 1}) distributions (see Figures 4(f)-
4(h)). For fixed a and oy 1, the three dispersion types of the DUE models are defined
by the base rate A, in contrast to the gamma, Weibull, CMP, and Faddy (1997) models.
We conjecture that this property holds for any non-monotonic rate sequence of DUE
processes and also UE processes.

We conclude that even the simplest generalizations of the Poisson and SUE pro-
cesses, the SUE and the DUE, are relatively flexible models for count data.



48 Unusual-event processes for count data

%

X XXX
XXXXX)
XXXXX)

0

(XXX
WS
\

.
)
w

/)
'l

4
i
X

&
0

\

0.5

)
"
O

XX
O
0
o

A
X
XXX

s
NIXRSS
05059

""%00

0

RS
SRS
S~ S

N

5954
K
N7

(d) SUE (y={3}) (h) DUE (Y= {3, 4}, a4 = 0.687)

Figure 4. Variance-mean ratios for SUE and DUE count models with 0 < o, < 3. Each SUE
surface ('y > 0) contains a saddle point, which is the intersection of the straight and curved lines.



Wanrudee Skulpakdee and Mongkol Hunkrajok 49

3. Computation of UE Probabilities

The solution of the Chapman-Kolmogorov forward differential equation (1) can be writ-
ten in terms of a matrix-exponential function (Cox and Miller 1965)

(Po(t) Py(£) . Pa(t)) = (10... 0) exp(Qr), %

where Q is the matrix of birth rates

A A O - 0
0 A4 A - 0

o=l 0 0 -2 . o0 [,
: : : Ao
0 0 0 - —A

and an integral function (Bartlett 1978)
Py (Z) = €_Mt,

t
Py(1) = / A1 Py (e ™"y for n > 0. (8)
0

The matrix exponentiation is the most common for computing the probabilities of
pure birth processes. Researchers usually rely on this method (e.g. Faddy and Smith
2011 and Smith and Faddy 2016), perhaps because various packages for calculating the
matrix exponential have been developed and made the routines available as described by
Faddy and Smith (2008). The analytic solution is obtained by the integral function. It
is computationally intractable (Faddy 1997; Crawford, Ho and Suchard, 2018) because
there is an extremely ill-conditioned problem in the solution. A numerical solution may
differ significantly from the exact solution. Therefore, the analytic solution is not ap-
propriate for numerical computation (Podlich et al. 2004). However, this ill-conditioned
problem can be solved by a Taylor series expansion. In this research, we will report
the computational results from the analytic solution that was previously thought to be
infeasible. The fertility and takeover bids datasets are considered in this paper. Their
results are obtained by using the matrix-exponential and analytic solution approaches.
We confirm here that the results from these two methods are identical.

The probability P, () in Equation (8) can be described as a convolution of two func-
tions. First, the probability density function A4, P,—(u) is the n-fold convolution of the
exponential density functions of the interarrival times between events. It presents the
probability that the nth event occurs at exactly time u. Second, e~ *(~%) is the survival
function of the interarrival times between the nth and (n+ 1)th event. The survival func-
tion denotes the probability that the (n+ 1)th event does not occur after time u and before
or at exact time 7. Using Equation (8) and letting A, = A, the first few probabilities of
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the UE count models are obtained:

Py(t) = e~ %M
(on—0g)At _ |
Pif) = e @M (€ T
1(t) = aoe < @ >
(—ag)At _ 1) (e((XQ*OQ)/'Lt _ 1)
P(t) = oo —az/lt< (e n )
(1) = comie (o1 —a)(0n—ao) (0 —au)(on—aq)

(e(oc37a0)lt . 1)

ao) (0 — o) (03 — a)

(e(ogfocl)lt . 1) N (e(a3f(x2)lz _ 1) )
(p—an)(—on)(az—oy) (09— 0n)(on—on)(os—on)

Ps(t) = oo ocze‘“3“<
(o1 —

_|_

From these equations for Py(¢), Pi(t), P»(t), and Ps(t), one can deduce that the general
UE probability function might be of the form

e oAt for n=0
P,(t) = n—1 n—1 (ay—0y)At -1 9
®) H(Xi e~ Ot Z H(: ' .(a._oz) for n > 0, ©)
i=0 i=0 11;=0, ;4\ i

and this expression is similar to Bartlett (1978, eq. (9), p. 55) and Crawford et al. (2018,
eq. (55), p. 13). Inserting the Taylor series expansion of e(®~%)A the UE probability
distribution can be rewritten as follow:

e oAl for n=0
B(t) =1 ("=} e (Ar)itm (10)
" (Ha,-)e MZCiEi—i-)n)' for n> 0,
i=0 i=0 :
where
1 for i=0

ki ky ki

“CIY Y Y [[0-a) forio.

kiZOk;_|:0 klzoj:kl

This expression can also be obtained from Equation (7) by letting @ = A (P —I), where

1—oy (0] 0 0

0 1—0oy (041 0
P=| o 0 l1-o . 0 |,

. . . |

0 0 0 e 1—oy
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and I denotes the identity matrix. If o; < 1 for i = 0,...,n, this procedure is known
as uniformization, originally introduced by Jensen (1953). Another method for obtain-
ing Equation (10) is to use continued fractions (see Parthasarathy and Sudhesh 2006).
However, the more details for computing P,(¢) are intricate and cannot be discussed
adequately here.

4. Experimental Results

This section shows results from two applications. The fertility data were analysed by
Winkelmann (1995) and re-analysed by McShane et al. (2008), Chanialidis et al. (2018),
and Kharrat et al. (2019). The takeover bids data were analysed by Jaggia and Thosar
(1993) and re-analysed by Cameron and Johansson (1997), Saez-Castillo and Conde-
Sanchez (2013), and Smith and Faddy (2016). For more information, the readers are
referred to Winkelmann (1995) for the fertility data and Cameron and Johansson (1997)
for the takeover bids data.

Experimental results obtained from the Poisson, gamma, Weibull, CMP, and Faddy
(mean only) models are computed using the stats (R Core Team 2019), Countr (gamma
and Weibull) (Kharrat and Boshnakov 2018), COMPoissonReg (Sellers et al. 2018),
and CountsEPPM (Smith and Faddy 2018) R packages. The fertility and takeover bids
datasets are available from the Countr and mpemp (Fung et al. 2019) R packages,
respectively. The UE models are implemented in R (R Core Team 2019) and C++. Most
of the code is written in C++ via the Repp (Eddelbuettel et al. 2021) package in order to
accelerate computations. The expm (Goulet et al. 2020) R package enables computation
of the matrix exponential for calculating the probabilities of UE processes.

Table 1. Shape parameter (), log-likelihood, BIC, and computation time (seconds) values of
several SUE models for the fertility and takeover bids data.

Fertility data Takeover bids data
Model oy -Log-L BIC Time oy -Log-L BIC Time
Poisson - 2101.8  4282.0 0.02 - 185.0 418.3 0.00

SUE (y={0}) 146  2078.1 4241.8 0.59 2.96 1713  395.8 0.05
SUE (y={1}) 1.23  2096.0 42775 0.57 0.40 174.1 4014 0.07
SUE (y={2}) 0.52 2048.8 4183.1 0.66 1.00 185.0 423.1 0.00
SUE (y={3}) 1.00  2101.8 4289.1 0.06 1.00 185.0 423.1 0.00
SUE (y = {4}) 1.00 2101.8 4289.1 0.05 1.00 185.0 423.1 0.00
SUE (y={5}) 1.00  2101.8 4289.1 0.04 1.00 185.0 423.1 0.00

The rate between two consecutive events different from the base rate causes an ex-
cess (or a lack) of counts relative to a benchmark model such as the Poisson. This un-
usual event might be investigated by comparing the histogram of the sample and Poisson
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Table 2. Highest log-likelihood, lowest BIC, and computation time (seconds) values of each k-
combination (1 < k <7) UE regression model.

Fertility data Takeover bids data
Y -Log-L  BIC Time Y -Log-L  BIC Time
{2} 2048.8 4183.1 1.6 {0} 1713 3958 0.2
{2,3} 2040.1 41729 10.6 {1,2} 168.0 3941 1.2
{2,3,4} 2037.3 41744 314 {1,2,3} 1669 396.6 3.1
{2,3,4,7} 2035.8 41785 54.6 {1,2,3,4} 1662  400.1 4.6

{1,2,3,4,7} 20347 41835 555  {1,2,3,4,5} 1658 404.1 43
{1,2,3,4,6,7}  2034.6 41903 315 {1,2,3,4,5,6} 1658 4089 23
{0,1,2,3,4,6,7} 20343 41968 102 {1,2,3,4,5,6,7} 1658 4137 08

distributions. For example, Figure 5(a) contains an excess of two counts. The “excess
two” phenomenon may arise in the situation that is the rate between the second and
third events is less than others. In other words, the third event is unusual, and the SUE
(y=1{2} and o < 1) model is preferred over other SUE models. The results in Table
1 show that the SUE (¥ = {2}) model has a higher log-likelihood and lower BIC val-
ues than other models. Therefore, we can conclude that the third event is the unusual
event of the fertility data. Similarly, in Figure 5(b), this approach can be applied to the
takeover bids data.

Visualizing the histograms can be a method for guessing unusual events, but it is
hard to conclude which UE model is the best. Therefore, an exhaustive search is utilized
for finding the best UE model because the number of UE models is limited. It is simple
and guaranteed to find the best solution. We assume that A,,’s (n > 7) are equal to the
base rate. For ¥ ={0,1,...,7}, there are 255 different UE models to choose from using
the combinations of all eight unusual events, 8 models (one and seven unusual events),
28 models (two and six unusual events), 56 models (three and five unusual events), and
70 models (four unusual events). Table 2 summarizes the highest log-likelihood, lowest
BIC, and computation time values of the k-combination (1 < k < 7) models by fitting
the UE regression models to the fertility and takeover bids data. For both datasets, as
k increases, the log-likelihood increases monotonically. The BIC attains minimum at
k =2, and the DUE model is selected as the best model.

The fertility data, which consists of 10 covariates, are very slightly underdispersed
with the variance-mean ratio equalling 2.328/2.384 = 0.977. The Poisson regression
model is inappropriate because the mixture of conditional equidispersed distributions
is always overdispersed. The gamma, Weibull, CMP, and Faddy (mean only) models
display underdispersion. These regression models perhaps provide a good fit for the data
because the mixture of conditional underdispersed distributions can be over-, under-, or
equidispersion. The SUE (¥ = {2}) provides a much better fit to the data than the other
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Table 3. Variance, mean, variance-mean ratio, and BIC values of several regression models for
the fertility and takeover bids data. The SUE (Y = {2}) and DUE (y = {2,3}) models fit to the
fertility data. The SUE (y = {0}) and DUE (y = {1,2}) models fit to the takeover bids data.

Fertility data Takeover bids data

Model Variance Mean  Ratio BIC Variance Mean  Ratio BIC

Sample 2.328 2384 0977 - 2.035 1.738  1.171 -
Poisson 2742 2382  1.151 4281.98 2227 1.737 1.282  418.26
Gamma 2.175 2383 0913 4241.96 1.710 1.736 0985 413.94
Weibull 2.157 2383 0905 4239.55 1.635 1.735 0943 413.61
CMP 2.166 2384 0909 4241.25 1.657 1.738  0.954 413.92
Faddy 2.190 2387 0917 4244.23 1.463 1.727 0.847 401.64
SUE 2.512 2386 1.053 4183.05 1.468 1.727  0.850 395.82
DUE 2.332 2376 0981 4172.87 2.142 1.740 1.231 394.12

models, excluding the DUE, although its variance-mean ratio disagrees with the actual
data (see Table 3). It means that the shape of the fertility data distribution resembles
the SUE (y = {2}) more than the other models (see Figure 5(a)). However, the DUE
(y=1{2,3}) provides the best fit in terms of BIC to the data. The log-likelihood value of
-2040.12 for this model with 13 parameters is much greater than -2048.77 from the SUE
(y={2}) model with 12 parameters. Because of the one additional parameter associated
with a substantial increase in log-likelihood, the BIC value of 4172.87 is smaller than
the SUE (Y = {2}). Note that the fertility data distribution may be the combination of
over-, under-, and equidispersed distributions, as described later.

For the takeover bids data, the variance-mean ratio is 2.035/1.738 = 1.171. There-
fore, the data present overdispersion. The Poisson provides the worst fit in terms of BIC
to the data even though it presents overdispersion as the data do (see Table 3). It inter-
prets that the shape of the takeover bids data distribution resembles the Poisson less than
the other models (see Figure 5(b)). The DUE (y = {1,2}) provides the best fit in terms
of BIC to the data, and its variance-mean ratio agrees with the actual data (see Table 3).
Note that the takeover bids data distribution may be the combination of over-, under-,
and equidispersed distributions, as described later.

Figure 5 presents the sample and predicted probabilities evaluated at individual co-
variates for the Poisson, gamma, Weibull, CMP, Faddy (mean only), SUE, and DUE
models. The fertility and takeover bits datasets contain an excess of two and one out-
comes, respectively. It means there are more twos and ones in the two datasets than
predicted by the Poisson, the gamma, etc. Figure 5(a) reveals that the models, excluding
the SUE (y={2}) and DUE (y = {2,3}) models, greatly underpredict the two outcomes
because the third event is unusual. The SUE (Y = {2}) model has the rate between the
second and third event differs from others. However, the SUE (y = {2}) underpredicts
the three outcomes because the fourth event is unusual. The DUE (y = {2,3}) has
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Figure 5. Sample and predicted relative frequency distributions.

the consecutive rates between the second and fourth event differ from others. Thus,
it leads to a considerable improvement of the predicted probabilities in the fertility
case. Figure 5(b) shows that the models, excluding the DUE (y = {1,2}), underpre-
dict the one outcome because the second and third events are unusual. The rate se-
quences of the SUE (y = {0}) and DUE (y = {1,2}) models are 2.962A4,A,1, A, A...
and A,0.3144,0.3784,A4, A..., respectively. The unusual events of the SUE (y = {0})
and DUE (y = {1,2}) models disagree, but they have in common the fact that 19 > A;.
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Tables 4 and 5 present the results from regressions for the number of children and
number of bids data. The regression results from the gamma and Weibull models are pro-
duced by the “nlminb” function and the CMP, Faddy (mean only), SUE, and DUE mod-
els by the “optim” function with the “BFGS” method. The six models use the Poisson
coefficients in Tables 4 and 5 as starting values of the unknown parameters f, B, ..., Br.
and the initial values of the other parameters are set to zero. The Poisson coefficients
are perhaps the best initial guess for these models because the models generalize the
Poisson. We note that the estimated parameters for the SUE and DUE regression models
reported in Tables 4 and 5 are obtained by using the analytic solution approach. These
values are identical to that produced by the matrix-exponential method, thus verifying
the accuracy of the Taylor series expansion approach.

Comparing ¢ in Table 4, these values in the gamma, Weibull, and CMP regression
models are respectively 1.439, 1.236, and 1.429, which exceed one considerably, so there
is an indication of underdispersion. The Faddy (mean only) also displays underdisper-
sion because o¢ = —0.129. These four regression models with fixed o exhibit only one
of over-, under-, and equidispersion. In other words, the dispersion types of these regres-
sion models depend only on ¢ but not on A. The SUE (¥ = {2} and o = 0.521) regres-
sion model displays overdispersion (A > 3.67), underdispersion (A < 3.67), and equidis-
persion (A = 3.67) (see Figure 4(c)). The DUE (y = {2,3}, ap = 0.503, and a3 = 0.687)
regression model displays overdispersion (A > 4.31), underdispersion (A < 4.31), and
equidispersion (A = 4.31) (see Figure 4(g)). The dispersion types of the SUE (y = {2})
and DUE (y = {2,3}) regression models depend on o, 0, and A. It shows the flexibility
of the SUE and DUE regression models to allow for over-, under-, and equidispersion,
although the shape parameters are fixed. This property does not appear in the gamma,
Weibull, CMP, and Faddy (1997) count models.

Figure 6 presents scatterplots of the fertility and takeover bids data. The dotted
points are an ordered pair of the estimated mean and variance of each response vari-
able produced by the seven models. The estimated mean and variance values of these
models have to be determined numerically directly from their probability distributions
using a suitable truncation (n). The points below and above the 45-degree (Poisson)
line indicate underdispersion and overdispersion, respectively. In Figures 6(a) and 6(b),
the SUE (y = {2}) curved (or the DUE (y = {2,3}) curved) and Poisson lines cut each
other at a point, which is the estimated mean equals the estimated variance. The gamma,
Weibull, CMP, and Faddy (mean only) lines are nearly coincident, indicating a similar
ability of these four models to handle the fertility data. It is supported by the results
in Table 4 that the log-likelihoods of these models are very similar. According to the
SUE (y = {2}) and DUE (y = {2,3}) regression models, the fertility data are divided
into two sets. The first set consists entirely of the underdispersed response variables, and
the overdispersed response variables belong to the second. For the SUE (Y = {2}), the
first set (1151 members) is about 12.5 times bigger than the second set (92 members).
For the DUE (y = {2,3}), the first set (1175 members) is about 17 times bigger than
the second set (68 members). The gamma, Weibull, and CMP models in Figure 6(c) can
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Figure 6. Scatterplots of estimated variances versus estimated means.
interpreted similarly to Figure 6(a), but the Faddy (mean only) model is different.

The Faddy (mean only) and SUE (y = {0}) curved lines lie nearly on top of each other
because the rate sequence of the SUE (y = {0}) process is very similar to the Faddy
(mean only) process. The rate sequences of the Faddy (mean only) and SUE (y = {0})
models are 2.924,1.001,0.984,0.96A,... and 2.964, 4,4, A, ..., respectively. They are
non-increasing, and thus the Faddy (mean only) and SUE (y = {0}) curved lines do
not cross the Poisson line. The DUE (¥ = {1,2}) curved line crosses the Poisson line,
indicating the takeover bids data distribution is the combination of 90 underdispersed
and 36 overdispersed distributions.
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5. Conclusion

The Poisson, gamma, Weibull, CMP, and Faddy (1997) count models are well-known,
but their underlying assumption of monotonic rate sequence limits their use in many ap-
plications. The UE count models, in contrast, are assumed that the rate sequences are
non-monotonic, and the distributions of their interarrival times are exponential. One sig-
nificant advantage of these new count models is the dispersion types defined by the base
rate and the shape parameters. Hence, the UE count models can display over-, under-,
and equidispersion, although the shape parameters are fixed numbers. In other words,
the conditional variance and mean of the UE regression models must not be linearly re-
lated, allowing for a mixture of the over-, under-, and equidispersed distributions. The
UE regression models are applied to the fertility and takeover bids data, and they offer
significant improvements in log-likelihood compared to the above well-known regres-
sion models. For fertility data, the results show that the women’s intentions to have third
and fourth children, unusual events, are considerably less than other children. The be-
havior of these women cannot be captured by the above well-known count models with
monotonic rates. Even though the UE count models offer significant improvements,
future studies could improve the models for better results by replacing the exponential
distribution with a non-negative distribution such as the gamma, the Weibull, etc.
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Appendices

A. Derivations of SUE probability functions

A.1. SUE (y={0})

Using Equations (3) and (8), the first few probabilities of the SUE (Y= {0}) count model
are obtained:

Py(t) = e~ %M
t

Pi(1) = / APy (u)e ) dy
0
O(()e*m

= Tea <e<1—ao)m _ 1)



60 Unusual-event processes for count data

t
P = [ AP (e du
0
—At
_ Qe (1—a)At _ 1 _ (1 _
s (e 1 (1 oco))u)
t
Ps(t) = [ APa(we " du
0
o —At

e _ 2
— Ty <e(1—ao)/lt —1—(1— o)At — W)

From these equations for Py(t), P;(t), Py(t), and Ps(t), one can deduce that the general
SUE (y = {0}) probability function might be of the form

o WAt for n=0

Pt)=q e ™ [ (gpn v ((1—00)Ar) (A.1)
(I — ) (e(l %) _izzof for n > 0.

Inserting the Taylor series expansion of e(!~%)* the SUE (y = {0}) probability distri-
bution can be rewritten as

e~ W for n=0
Pu(t) = n g (1= 00)Ar) (A2)

A.2. SUE(y={y>0})

Using Equations (3) and (8), the first few probabilities of the SUE (¥ = {y > 0}) count
model are obtained:

Pi(t)= | APy(u)e MW du= pte ™
0

t A1) 1 —At
Pyi(t) = /0 ku,z(u)e_’w_“)du = ((7)/—13!

t
Py(t):/ ku,l(u)e_aVMI_”)du
0
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From these equations for Py(t), Py (t), ..., Py—1(t), Py(t), and Py, (t), one can deduce that
the general SUE (y = {y > 0}) probability function might be of the form

n,—At

W)n'e forn<y

e o (1= o) &)’
_ oA Ny A PV _
Pn(l) _ (1 — Oty)” <€ Oy )AL Z;O . for n=7y (A.3)

—At n—1 i
aye ey (1= oy) A1)

7(1 %) (e 4 I;’) B — for n>vy.

Inserting the Taylor series expansion of e(!~®)* the SUE (y = {y > 0}) probability
distribution can be rewritten as

n ,—At
W)n‘e for n<vy
p e ((I—o At)’
Pu(t) = { (A1) el;)w for n=y (A4)
p e ((I—o At)'
ay(lt)elig’)(((i_i_;))!) for n > 7.

B. Derivations of DUE (Y = {y, v+ 1}) Probability Functions

B.1. DUE (y={0,1})

Using Equations (5) and (8), the first few probabilities of the DUE (¥ = {0,1}) count
model are obtained:

Py(t) = e M

/a())’PO Otlll udu
t

—1
_7< (1—a0)At _ ,(1- al)/u)
(a1 — )
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From these equations for Py(t), P(t), P»(t), and Ps(t), one can deduce that the general
DUE (y = {0, 1}) probability function might be of the form

o oAl for n=0
)
(2‘03&;) (e(l—ao)/lt _ e(l—al)“) for n=1
—
n—2 i
(1—ap)at _ 'y ((I=a0)r)'
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(o — ) (1— )"
Sl1—ait ’g((l—?;)lr)"
_ i=0 — for n> 1.
(1 — OCl)n

Inserting the Taylor series expansion of el!~®)* and ¢(!=*)4" the DUE (y = {0,1})
probability distribution can be rewritten as

( o C0A1 for n=0
S ci(Ar) B
P = Ae ;) Grip  orn=l (B.2)

where c; = ¥ (1—ot)* (1 — ;)%
k=0
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B.2. DUE(y={y>0,y+1})

Using Equations (5) and (8), the first few probabilities of the DUE (Y= {y,y+ 1}) count
model are obtained:

Ry(t)=eM
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From these equations for Py(t), Pi(t), ..., Py4+1(t), Py2(t), and Py, 3(t), one can deduce
that the general DUE (y = {y,y+ 1}) probability function might be of the form
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— O i=0 !
(1—oy)Ar _ =2 ((1*ay)/1’)i
—At € )y il
Oye i=0 '
(41— ) ( (1—a)""
Palt) = o(1-ap )i _"y? ((1=aa)2r) (B.3)
i=0 i
- - forn=y+1
(1-041)""
(1—ap)a "5 (1))’
-t [€ )y H
OyOyt1€ i=0 '
(ays1 — ) ( (1—a)""

p1=o)Ar _ "iz ((l—aﬁl)lz)i

(1 o 1)n_1 for n>y+1.
— oy
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Inserting the Taylor series expansion of e1=a)A1 gnd e(1-1)A1 the DUE (y={y,y+1})
probability distribution can be rewritten as

n_—At
(7Lt)n'e forn<y
= ((1—oy) A1)
(At)ne—ltz (( . a}/) t) fOI' n= ,}/
B) = = (i+n)! B4)
' oy (Ar)" e M i ci(At) for n=y+1 '
¥ = (i+n)!
e Ci(Ar)
04 0ly 4 1 (ll) e Ml;)(l'_|_n)' for n>7y+1,
i k i~k
where ¢c; = ) (1 — Ocy) (1 — OtyH)
k=0
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