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Unusual-event processes for count data 

Wanrudee Skulpakdee1 and Mongkol Hunkrajok2 

Abstract 

At least one unusual event appears in some count datasets. It will lead to a more 
concentrated (or dispersed) distribution than the Poisson, gamma, Weibull, Conway-
Maxwell-Poisson (CMP), and Faddy (1997) models can accommodate. These well-
known count models are based on the monotonic rates of interarrival times between 
successive events. Under the assumption of non-monotonic rates and independent 
exponential interarrival times, a new class of parametric models for unusual-event (UE) 
count data is proposed. These models are applied to two empirical applications, the 
number of births and the number of bids, and yield considerably better results to the 
above well-known count models. 

MSC: 62J99, 62M05, 62P99. 

Keywords: Poisson count model, Gamma count model, Weibull count model, Conway-Maxwell-
Poisson count model, Faddy count model. 

1. Introduction 

Count data regression analysis is a collection of statistical techniques for modeling and 
investigating the conditional count distributions of count response variables given sets of 
covariates. The conditional-variance-mean function of these distributions can be classi-
fed into two different categories: linear and non-linear. 

1. If the distributions are equidispersed (variance = mean), this function is linear. 

2. If the distributions are overdispersed (variance > mean), this function is either 
linear or non-linear. 
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3. If the distributions are underdispersed (variance < mean), this function is either 
linear or non-linear. 

4. If the distributions are over-, under-, and equidispersed, this function is non-linear. 

A renewal process is a counting process. Its times between successive events are in-
dependent and identically distributed with a non-negative distribution (Ross 2010). The 
primary assumption of the Poisson model is that the times between events are expo-
nential. It follows that the Poisson model is equidispersed, and the Poisson regression 
model has a linear conditional-variance-mean function. The exponential distribution 
replaced by a less restrictive non-negative distribution such as the gamma and Weibull 
distributions leads to the gamma (Winkelmann 1995) and Weibull (McShane et al. 2008) 
count models. They allow for both overdispersion and underdispersion. The gamma and 
Weibull regression models have linear conditional-variance-mean functions when the 
additional parameter (α) equals 1, that is, the Poisson regression model. Furthermore, 
they have nearly linear conditional-variance-mean functions shown in Figures 1(a) and 
1(b), although α does not approach 1. 

The Conway-Maxwell-Poisson (CMP) model was originally introduced by Conway 
and Maxwell (1962). In contrast to the above models, the CMP model is not derived from 
an underlying renewal process. The proof can be found in the Supplementary Material. 
Surprisingly, however, the graphs in Figures 1(a) and 1(c) of the conditional-variance-
mean functions for the gamma and the CMP are hardly distinguishable. A plausible 
explanation for this similarity is the equality of their approximate variance-mean ratios. 
These ratios are equal to a constant 1/α (Winkelmann 1995, p. 470; Sellers and Shmueli 
2010, p. 946). Likewise the gamma and Weibull count models, the CMP model consists 
of the rate and dispersion parameters. Thus, it allows for both over- and underdispersion. 

As previously mentioned, the conditional variance and mean of the above well-
known regression models are (nearly) linearly related. In some applications, these re-
gression models are either unsatisfactory or inappropriate when the sample relative fre-
quency distribution is created as a mixture of distributions whose relationship between 
the variance and the mean is non-linear. 

The common assumption that the rates of interarrival times are equal may cause a 
(nearly) linear conditional-variance-mean function. One potential solution to this prob-
lem is to allow the unequal rates. Faddy (1997) suggested the generalization of the 
Poisson process λn = λ (b + n)α , n = 0,1, ,2, ..., in which the rate at which new events 
occur depends on the number of events. The rate sequence of the Faddy (1997) pro-
cess is either non-decreasing or non-increasing. The Faddy (1997) regression model 
has both (nearly) linear and non-linear conditional-variance-mean functions shown in 
Figures 1(d), but it displays only one of over-, under-, and equidispersion. There-
fore, this regression model is either unsatisfactory or inappropriate when the sample 
relative frequency distribution is created as a mixture of over-, under-, and equidis-
persed distributions whose relationship between the variance and the mean must be non-
linear. Note that the conditional variances and means in Figure 1 were computed in R 
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(a) Gamma (b) Weibull 
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(c) CMP (d) Faddy (1997) 
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Figure 1. Graphs showing the linear and non-linear functions of variance and mean. The Faddy 
(1997), DUE (γ = {0,1}), and DUE (γ = {2,3}) models present the cases in which b, α1, and 
α3 are 1 × 10−20 ,0.687, and 0.687, respectively. 
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(R Core Team 2019) by the dCount-conv-bi function in the Countr package (Khar-
rat and Boshnakov 2018) for the gamma and Weibull count models, the dcmp function 
in the COMPoissonReg package (Sellers, Lotze and Raim, 2018) for the CMP count 
model, and the Faddyprob.general function in the CountsEPPM package (Smith 
and Faddy 2018) for the Faddy (1997) count model. 

The limitation that the above regression models present only one dispersion type may 
be easily removed by allowing for non-monotonic rate sequences. The two examples are 
the single-unusual-event (SUE (γ = {2})) and double-unusual-event (DUE (γ = {2,3})) 
models shown in Figures 1(f) and 1(h). Their curves corresponding to α2 ̸= 1 always 
cross the 45-degree (Poisson) lines. Thus, these models can ft a dataset that is a mixture 
of over-, under-, and equidispersion. The development and exploration of a new class 
of unusual-event (UE) models is the main objective of the present article. Note that the 
SUE (γ = {0}) model is a special case of the Faddy (1997) (see Figures 1(d) and 1(e)), 
as described later. 

The rest of this article is organized as follows. Section 2 presents the UE models 
and their properties, with additional details provided in Appendices A and B at the end 
of the paper. Section 3 discusses numerical strategies for computing UE probabilities. 
Section 4 provides and analyses the experimental results from the number of births and 
the number of bids. Finally, Section 5 concludes the paper. 

2. Unusual-event models 

Let X(t) be a discrete random variable, representing the total number of events that occur 
before or at exactly time t. {X(t); t ≥ 0} is a pure birth process with X(0) = 0 and birth 
rates λn (n ≥ 0). The probabilities Pn(t) = P{X(t) = n | X(0) = 0}, for n = 0,1,2, ..., 
satisfy the Chapman-Kolmogorov forward differential equations (Cox and Miller 1965), 
namely 

P0 
′ (t) =−λ0P0(t), 

P ′ (t) =−λnPn(t)+λn−1Pn−1(t), n > 0, (1)n 

with boundary conditions P0(0) = 1 and Pn(0) = 0, n > 0. 
Different distributions correlate with different birth rate sequence λn patterns. The 

simple Poisson process, which has a constant rate parameter λ , restricts that the variance 
equals the mean. The birth rate, which depends on the number of events, may allow for 
overdispersion and underdispersion. Increasing the number of parameters in the process 
almost always improves the goodness of ft (as assessed by the log-likelihood function), 
but it may cause overftting. Thus, the rate λn must be a parametric function of n, as 
stated by Faddy and Smith (2008). Examples of pure birth processes follow below. 

1. A sequence of rates 

λn = λ , for n = 0,1,2, ..., λ > 0, 

exhibits the Poisson distribution, which is a one-parameter count model. 
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2. A sequence of rates 
 

λ for n > 0
λn = 

λ0 for n = 0, λ and λ0 > 0, 

exhibits the Faddy (1994) distribution, which is a two-parameter count model. 

3. A sequence of rates 

λn = 

  

 

λ for n > 1 

λ0 for n = 0 

λ1 for n = 1, λ , λ0, and λ1 > 0, 

exhibits the extended Faddy (1994) distribution, which is a three-parameter count 
model. 

4. A sequence of rates 

λn = λ (b+ n)α , for n = 0,1,2, ..., λ > 0, b > 0, and α ≤ 1, 

exhibits the Faddy (1997) distribution, which is a three-parameter count model. 

The Faddy (1994), extended Faddy (1994), and Faddy (1997) models have greater 
fexibility than the Poisson model at the cost of additional parameters. Covariates can 
be incorporated into these models by setting λ as a function of the linear predictor β0 + 
β1x j1 + ... + βrx jr, where x jk, k = 1, ...,r, is the jth observation of the kth covariate, and 
βl, l = 0, ...,r, is the lth unknown parameter to be estimated. The rates λn (n ≥ 0) of the 
Poisson and Faddy (1997) distributions depend on the covariates, but the rates λ0 and λ1 

of the Faddy (1994) and extended Faddy (1994) do not. One might argue that λ0 and λ1 

can be written as a function of the linear predictor. However, the approximately doubled 
(Faddy (1994)) and tripled (extended Faddy (1994)) parameters comparing to the above 
two distributions may lead to overftting. Perhaps the rate sequences of the Faddy (1994) 
and extended Faddy (1994) can be easily modifed as follows: 

 
λ for n > 0

λn = 
α0λ for n = 0, α0 and λ > 0, 

and 

λn = 

  

 

λ for n > 1 

α0λ for n = 0 

α1λ for n = 1, α0, α1, and λ > 0. 

We call λ the base rate. These modifed rate sequences can avoid the risk of overft-
ting, and the rates λn depend on covariates. In other words, these distributions with the 
fewest numbers of parameters occur when λ is a function of the linear predictor. 
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We call the pure birth process with this pattern of the rate sequences the unusual-
event (UE) process because at least one rate differs from the base rate λ . It is defned 
as ˜ 

λ for n ∈/ γ = {γ1, γ2, ..., γm}λn = (2)
αγi λ for n ∈ γ , 

where γi is a non-negative integer, and αγi > 0, i = 1, 2, ... ,m. We call αγi the shape 
parameter. The UE process permits a wide range of regression models for count data, in-
cluding the combinations of distributions with either one or three dispersion types. These 
possibilities are illustrated using the single-unusual-event (SUE) and double-unusual-
event (DUE) processes. 
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Figure 2. SUE (γ = {2} and λ = 2.7) distributions with unequal means and dispersions. 

2.1. SUE models 

Perhaps the simplest example of UE processes is a SUE process with 

˜ 
λ for n ∈/ γ = {γ}

λn = (3)
αγλ for n = γ . 

For αγ = 1, the SUE process simplifes to the Poisson process. It is noted that the 
SUE distribution is characterized by independently exponential distributed interarrival 
times. Figure 2 compares the probability functions of the SUE (γ = {2} and λ = 2.7) 
distribution for fve values of α2. It is more concentrated (α2 < 1) or more dispersed 
(α2 > 1) than the Poisson distribution (α2 = 1). The overdispersion case α2 = 2.8 shows 
a probability distribution with two distinct modes (1 and 3) referred to as a bimodal 
distribution. 
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The SUE (γ = {2}) probability function is given by 
 
  

(λ t)n e−λ t 
for n < 2 

n!
∞

∑ ((1 − α2)λ t)i 

(λ t)n e−λ t for n = 2Pn(t) =  (4)(i + n)!i=0 
 

((1 − α2)λ t)i∞

∑α2 (λ t)n e−λ t for n > 2. 
(i + n)!i=0 

The derivations of SUE probability distributions can be found in Appendix A. For n < 2, 
the SUE (γ = {2}) probability function is Poisson. It is not a function of α2, and thus the 

∞
∑ 

probabilities in Figure 2 are equal at n = 0 and 1. For n = 2, the SUE (γ = {2}) proba-
2 ie−λ t 

bility function can be simplifed to (λ t) 
2! 

((1−α2)λ t)+(1 − α2)(λ t)3 e−λ t . The frst(i+3)!
i=0 

term is the Poisson probability function for n = 2. Since the second term is positive 
(α2 < 1) and negative (α2 > 1), the SUE (γ = {2}) probability value is greater and 
smaller than the Poisson (α2 = 1) , respectively. 

The Faddy (1994) process is equivalent to the SUE (γ = {0}) process, but only when 
their regression models are not considered. Therefore, the proof of the Faddy (1994) by 
direct calculation that for t > 0, 

λ0Var {X(t)} > E {X(t)} if = α0 < 1
λ 

and 
λ0Var {X(t)} < E {X(t)} if = α0 > 1,
λ 

is still correct for the SUE (γ = {0}) process. Alternatively, α0 < 1 and α0 > 1 re-
sult in non-decreasing and non-increasing rate sequences, which provide overdispersed 
and underdispersed SUE (γ = {0}) distributions, respectively (see Figure 4(a)). These 
properties were conjectured by Faddy (1994) and proved by Ball (1995). Note that the 
non-increasing and non-decreasing rate sequences mean λn+1 ≤ λn and λn+1 ≥ λn, re-
spectively. 

It is worth mentioning that the SUE (γ = {0}) model is a special case of the Faddy 
(1997) model (see Figures 1(d) and 1(e)). Let us consider a rate sequence of the Faddy 

1 

(1997) model in which the parameter b is given in the form σ |α| , where 0 < σ ≤ 1. It 
can be shown that 

  α1 λ for n > 0 
|α| + nlim λn = lim λ σ = λ 1 

σ = α0λ for n = 0, α0 = σ ≥ 1,α→0− α→0− 

and 
  α1 λ for n > 0 

|α| + nlim λn = lim λ σ = 
α→0+ α→0+ σλ  = α0λ for n = 0, 0 < α0 = σ ≤ 1. 
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Figure 3. DUE (γ = {2,3} , λ = 2.7, and α2 = 0.8) distributions with unequal means and 
dispersions. 

Hence, the SUE (γ = {0}) models with α0 ≥ 1 and 0 < α0 ≤ 1 are the limiting cases of 
the Faddy (1997) model. They arise when α approaches 0 from the left and the right, 
respectively. 

Figures 4(a)-4(d) show graphs of the variance-mean ratio with γ = 0 − 3 for various 
values of λ and αγ . αγ ̸= 1, γ > 0, results in a non-monotonic rate sequence, which 
provides over-, under-, and equidispersed SUE (γ = {γ > 0}) distributions (see Figures 
4(b)-4(d)). For fxed αγ , the three dispersion types of the SUE models are defned by 
the base rate λ , in contrast to the gamma, Weibull, CMP, and Faddy (1997) models. 
We conjecture that this property holds for any non-monotonic rate sequence of SUE 
processes. 

2.2. DUE models 

Perhaps the simplest example of DUE processes is a pure birth process with 

λn = 

  

 

λ for n ∈/ γ = {γ, γ + 1} 

αγλ for n = γ (5) 

αγ+1λ for n = γ + 1. 

For αγ ̸= 1 and αγ+1 = 1, the DUE (γ = {γ,γ + 1}) process simplifes to the SUE (γ = 
{γ}) process. We consider the DUE count model in which the rates, λγ and λγ+1, of two 
consecutive events are not equal to the base rate. This phenomenon appears to occur in 
the two empirical applications, the number of births and the number of bids, shown in 
Tables 4 and 5. Figure 3 compares the probability functions of the DUE (γ = {2,3} , λ = 
2.7, and α2 = 0.8) distribution for fve values of α3. It is more concentrated (α3 < 1) 
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or more dispersed (a3 > 1) than the SUE distribution (a3 = 1). The DUE (a3 = 2.8) 
distribution is a bimodal distribution whose modes are 2 and 4. The bimodal distributions 

of the SUE (g = {2} , l = 2.7, and a2 = 2.8) and the DUE (g = {2,3} , l = 2.7, a2 = 
0.8, and a3 = 2.8) suggest that we should expect a UE distribution to be a multimodal 

distribution, which is a discrete probability distribution with two or more modes. 

The DUE (g = {2,3}) probability function is given by 

8 −l t(l t)n
e 

> 
> for n < 2 
> 
> 
> n! 
> 
> 
> 
> 

((1 − a2)l t)i
> 
> 
> 
> −l t 
> (l t)n 
> e 

¥

å for n = 2 
(i + n)!> 

< 
i=0 

Pn(t) = (6) 
ci (l t)i¥

å 
i 0= 

> 
> 
> −l t 
> a2 (l t)n 
> e 
> 
> 
> 
> 
> 
> 
> 
> 

for n = 3 
(i + n)! 

ci (l t)i¥

å 
> 
> −l t 
> 
: a2a3 (l t)n

e for n > 3,
(i + n)!

i=0 

i 
(1 − a2)

k (1 − a3)
i−k 

. The derivations of DUE (g = {g,g + 1}) probabil-where ci = å 
k=0 

ity distributions can be found in Appendix B. For n < 3, the DUE (g = {2,3}) probabil-

ity functions are not dependent on a3, and thus the probabilities in Figure 3 are equal at 

n = 0, 1, and 2. For n = 3, the DUE (g = {2,3}) probability function can be simplifed 
¥

å 
¥

å
((1−a2)l t)i 

ci(l t)i 

to a2 (l t)3 
e −l t +a2(1−a3)(l t)4 

e −l t . The frst term is the SUE(i+3)! (i+4)! 
i=0 i=0 

(g = {2}) probability function for n = 3. Since the second term is positive (a3 < 1) and 

negative (a3 > 1), the DUE (g = {2,3}) probability value is greater and smaller than the 

SUE (g = {2}), respectively. 

Figures 4(e)-4(h) show graphs of the variance-mean ratio with g = 0 − 3 for various 

values of l and ag . A non-decreasing rate sequence with a0 ≤ a1 < 1 provides only 

overdispersed DUE (g = {0,1}) distribution, and a non-monotonic rate sequence with 

a0 > a1 < 1 produces over-, under-, and equidispersed DUE (g = {0,1}) distribution 

(see Figure 4(e)). g 6= {0,1} results in a non-monotonic rate sequence, which provides 

over-, under-, and equidispersed DUE (g = {g,g + 1}) distributions (see Figures 4(f)-

4(h)). For fxed ag and ag+1, the three dispersion types of the DUE models are defned 

by the base rate l , in contrast to the gamma, Weibull, CMP, and Faddy (1997) models. 

We conjecture that this property holds for any non-monotonic rate sequence of DUE 

processes and also UE processes. 

We conclude that even the simplest generalizations of the Poisson and SUE pro-

cesses, the SUE and the DUE, are relatively fexible models for count data. 
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Figure 4. Variance-mean ratios for SUE and DUE count models with 0 < αγ < 3. Each SUE 
surface (γ > 0) contains a saddle point, which is the intersection of the straight and curved lines. 
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3. Computation of UE Probabilities 

The solution of the Chapman-Kolmogorov forward differential equation (1) can be writ-
ten in terms of a matrix-exponential function (Cox and Miller 1965) 

(P0(t) P1(t) ... Pn(t)) = (1 0  ... 0)exp(QQt), (7) 

where Q is the matrix of birth rates 

 

Q = 

 

−λ0 λ0 0 · · ·  0 
0 −λ1 λ1 · · ·  0 

.
0 0 −λ2 

 

, . . 0 
. . . .. . . . . 
0 0 0 · · ·  −λn 

. . . λn−1 

and an integral function (Bartlett 1978) 

−λ0tP0(t) = e , 

Pn(t) =  
 t 

0 
λn−1Pn−1(u)e−λn(t−u)du for n > 0. (8) 

The matrix exponentiation is the most common for computing the probabilities of 
pure birth processes. Researchers usually rely on this method (e.g. Faddy and Smith 
2011 and Smith and Faddy 2016), perhaps because various packages for calculating the 
matrix exponential have been developed and made the routines available as described by 
Faddy and Smith (2008). The analytic solution is obtained by the integral function. It 
is computationally intractable (Faddy 1997; Crawford, Ho and Suchard, 2018) because 
there is an extremely ill-conditioned problem in the solution. A numerical solution may 
differ signifcantly from the exact solution. Therefore, the analytic solution is not ap-
propriate for numerical computation (Podlich et al. 2004). However, this ill-conditioned 
problem can be solved by a Taylor series expansion. In this research, we will report 
the computational results from the analytic solution that was previously thought to be 
infeasible. The fertility and takeover bids datasets are considered in this paper. Their 
results are obtained by using the matrix-exponential and analytic solution approaches. 
We confrm here that the results from these two methods are identical. 

The probability Pn(t) in Equation (8) can be described as a convolution of two func-
tions. First, the probability density function λn−1Pn−1(u) is the n-fold convolution of the 
exponential density functions of the interarrival times between events. It presents the 
probability that the nth event occurs at exactly time u. Second, e−λn(t−u) is the survival 
function of the interarrival times between the nth and (n +1)th event. The survival func-
tion denotes the probability that the (n+1)th event does not occur after time u and before 
or at exact time t. Using Equation (8) and letting λn = αnλ , the frst few probabilities of 
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the UE count models are obtained: 

−α0λ tP0(t) =  e 
  

e(α1−α0)λ t −1−α1λ tP1(t) =  α0e 
α1 −α0 

(e(α2−α0)λ t −1) (e(α2−α1)λ t −1) 
  

−α2λ tP2(t) =  α0α1e + 
(α1 −α0)(α2 −α0) 

(e(α3−α0)λ t −1) 
 (α0 −α1)(α2 −α1) 

−α3λ tP3(t) =  α0α1α2e 
(α1 −α0)(α2 −α0)(α3 −α0) 

(e(α3−α1)λ t −1) (e(α3−α2)λ t −1) 
 

+ + 
(α0 −α1)(α2 −α1)(α3 −α1) (α0 −α2)(α1 −α2)(α3 −α2) 

From these equations for P0(t), P1(t), P2(t), and P3(t), one can deduce that the general 
UE probability function might be of the form 

 
  e−α0λ t for n = 0 

n−1 n−1 (e(αn−αi)λ t −1)Pn(t) =  (9)
∏ 
i 0= 

 
−αnλ tαi e ∑ 

i=0 

for n > 0,
∏n 

=i(α j −αi)j=0, j ̸ 

and this expression is similar to Bartlett (1978, eq. (9), p. 55) and Crawford et al. (2018, 
eq. (55), p. 13). Inserting the Taylor series expansion of e(αn−αi)λ t , the UE probability 
distribution can be rewritten as follow: 

 
  e−α0λ t for n = 0 

∞

∑ 
n−1 (λ t)i+nPn(t) =  (10)

αi e−λ t∏ for n > 0,ci 
(i + n)!i=0 i=0 

where 
  1 for i = 0 

n ki k2 kici = ∑∑ ... ∏∑ (1 −α j) for i > 0. 
ki=0 ki−1=0 k1=0 j=k1 

This expression can also be obtained from Equation (7) by letting Q = λ (P − I), where 

 

P = 

 

1 −α0 α0 0 · · ·  0 
0 1 −α1 α1 · · ·  0 

0 0 
.

1 −α2 
. . 0 

. . . .. . . . . . . . αn−1 

 

, 

0 0 0 · · ·  1 −αn 
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and I denotes the identity matrix. If αi ≤ 1 for i = 0, ...,n, this procedure is known 
as uniformization, originally introduced by Jensen (1953). Another method for obtain-
ing Equation (10) is to use continued fractions (see Parthasarathy and Sudhesh 2006). 
However, the more details for computing Pn(t) are intricate and cannot be discussed 
adequately here. 

4. Experimental Results 

This section shows results from two applications. The fertility data were analysed by 
Winkelmann (1995) and re-analysed by McShane et al. (2008), Chanialidis et al. (2018), 
and Kharrat et al. (2019). The takeover bids data were analysed by Jaggia and Thosar 
(1993) and re-analysed by Cameron and Johansson (1997), Saez-Castillo and Conde-
Sanchez (2013), and Smith and Faddy (2016). For more information, the readers are 
referred to Winkelmann (1995) for the fertility data and Cameron and Johansson (1997) 
for the takeover bids data. 

Experimental results obtained from the Poisson, gamma, Weibull, CMP, and Faddy 
(mean only) models are computed using the stats (R Core Team 2019), Countr (gamma 
and Weibull) (Kharrat and Boshnakov 2018), COMPoissonReg (Sellers et al. 2018), 
and CountsEPPM (Smith and Faddy 2018) R packages. The fertility and takeover bids 
datasets are available from the Countr and mpcmp (Fung et al. 2019) R packages, 
respectively. The UE models are implemented in R (R Core Team 2019) and C++. Most 
of the code is written in C++ via the Rcpp (Eddelbuettel et al. 2021) package in order to 
accelerate computations. The expm (Goulet et al. 2020) R package enables computation 
of the matrix exponential for calculating the probabilities of UE processes. 

Table 1. Shape parameter (αγ ), log-likelihood, BIC, and computation time (seconds) values of 
several SUE models for the fertility and takeover bids data. 

Fertility data Takeover bids data 

Model αγ -Log-L BIC Time αγ -Log-L BIC Time 

Poisson - 2101.8 4282.0 0.02 - 185.0 418.3 0.00 

SUE (γ = {0}) 1.46 2078.1 4241.8 0.59 2.96 171.3 395.8 0.05 

SUE (γ = {1}) 1.23 2096.0 4277.5 0.57 0.40 174.1 401.4 0.07 

SUE (γ = {2}) 0.52 2048.8 4183.1 0.66 1.00 185.0 423.1 0.00 

SUE (γ = {3}) 1.00 2101.8 4289.1 0.06 1.00 185.0 423.1 0.00 

SUE (γ = {4}) 1.00 2101.8 4289.1 0.05 1.00 185.0 423.1 0.00 

SUE (γ = {5}) 1.00 2101.8 4289.1 0.04 1.00 185.0 423.1 0.00 

The rate between two consecutive events different from the base rate causes an ex-
cess (or a lack) of counts relative to a benchmark model such as the Poisson. This un-
usual event might be investigated by comparing the histogram of the sample and Poisson 
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Table 2. Highest log-likelihood, lowest BIC, and computation time (seconds) values of each k-
combination (1 ≤ k ≤ 7) UE regression model. 

Fertility data Takeover bids data 

γ -Log-L BIC Time γ -Log-L BIC Time 

{2} 2048.8 4183.1 1.6 {0} 171.3 395.8 0.2 

{2,3} 2040.1 4172.9 10.6 {1,2} 168.0 394.1 1.2 

{2,3,4} 2037.3 4174.4 31.4 {1,2,3} 166.9 396.6 3.1 

{2,3,4,7} 2035.8 4178.5 54.6 {1,2,3, 4} 166.2 400.1 4.6 

{1,2,3,4, 7} 2034.7 4183.5 55.5 {1,2,3,4,5} 165.8 404.1 4.3 

{1, 2,3,4,6,7} 2034.6 4190.3 31.5 {1,2,3,4, 5,6} 165.8 408.9 2.3 

{0, 1,2,3,4,6,7} 2034.3 4196.8 10.2 {1,2,3,4, 5,6,7} 165.8 413.7 0.8 

distributions. For example, Figure 5(a) contains an excess of two counts. The “excess 
two” phenomenon may arise in the situation that is the rate between the second and 
third events is less than others. In other words, the third event is unusual, and the SUE 
(γ = {2} and α2 < 1) model is preferred over other SUE models. The results in Table 
1 show that the SUE (γ = {2}) model has a higher log-likelihood and lower BIC val-
ues than other models. Therefore, we can conclude that the third event is the unusual 
event of the fertility data. Similarly, in Figure 5(b), this approach can be applied to the 
takeover bids data. 

Visualizing the histograms can be a method for guessing unusual events, but it is 
hard to conclude which UE model is the best. Therefore, an exhaustive search is utilized 
for fnding the best UE model because the number of UE models is limited. It is simple 
and guaranteed to fnd the best solution. We assume that λn’s (n > 7) are equal to the 
base rate. For γ = {0,1, ...,7}, there are 255 different UE models to choose from using 
the combinations of all eight unusual events, 8 models (one and seven unusual events), 
28 models (two and six unusual events), 56 models (three and fve unusual events), and 
70 models (four unusual events). Table 2 summarizes the highest log-likelihood, lowest 
BIC, and computation time values of the k-combination (1 ≤ k ≤ 7) models by ftting 
the UE regression models to the fertility and takeover bids data. For both datasets, as 
k increases, the log-likelihood increases monotonically. The BIC attains minimum at 
k = 2, and the DUE model is selected as the best model. 

The fertility data, which consists of 10 covariates, are very slightly underdispersed 
with the variance-mean ratio equalling 2.328/2.384 = 0.977. The Poisson regression 
model is inappropriate because the mixture of conditional equidispersed distributions 
is always overdispersed. The gamma, Weibull, CMP, and Faddy (mean only) models 
display underdispersion. These regression models perhaps provide a good ft for the data 
because the mixture of conditional underdispersed distributions can be over-, under-, or 
equidispersion. The SUE (γ = {2}) provides a much better ft to the data than the other 
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Table 3. Variance, mean, variance-mean ratio, and BIC values of several regression models for 
the fertility and takeover bids data. The SUE (γ = {2}) and DUE (γ = {2,3}) models ft to the 
fertility data. The SUE (γ = {0}) and DUE (γ = {1,2}) models ft to the takeover bids data. 

Fertility data Takeover bids data 

Model Variance Mean Ratio BIC Variance Mean Ratio BIC 

Sample 2.328 2.384 0.977 - 2.035 1.738 1.171 -
Poisson 2.742 2.382 1.151 4281.98 2.227 1.737 1.282 418.26 

Gamma 2.175 2.383 0.913 4241.96 1.710 1.736 0.985 413.94 

Weibull 2.157 2.383 0.905 4239.55 1.635 1.735 0.943 413.61 

CMP 2.166 2.384 0.909 4241.25 1.657 1.738 0.954 413.92 

Faddy 2.190 2.387 0.917 4244.23 1.463 1.727 0.847 401.64 

SUE 2.512 2.386 1.053 4183.05 1.468 1.727 0.850 395.82 

DUE 2.332 2.376 0.981 4172.87 2.142 1.740 1.231 394.12 

models, excluding the DUE, although its variance-mean ratio disagrees with the actual 
data (see Table 3). It means that the shape of the fertility data distribution resembles 
the SUE (γ = {2}) more than the other models (see Figure 5(a)). However, the DUE 
(γ = {2,3}) provides the best ft in terms of BIC to the data. The log-likelihood value of 
-2040.12 for this model with 13 parameters is much greater than -2048.77 from the SUE 
(γ = {2}) model with 12 parameters. Because of the one additional parameter associated 
with a substantial increase in log-likelihood, the BIC value of 4172.87 is smaller than 
the SUE (γ = {2}). Note that the fertility data distribution may be the combination of 
over-, under-, and equidispersed distributions, as described later. 

For the takeover bids data, the variance-mean ratio is 2.035/1.738 = 1.171. There-
fore, the data present overdispersion. The Poisson provides the worst ft in terms of BIC 
to the data even though it presents overdispersion as the data do (see Table 3). It inter-
prets that the shape of the takeover bids data distribution resembles the Poisson less than 
the other models (see Figure 5(b)). The DUE (γ = {1,2}) provides the best ft in terms 
of BIC to the data, and its variance-mean ratio agrees with the actual data (see Table 3). 
Note that the takeover bids data distribution may be the combination of over-, under-, 
and equidispersed distributions, as described later. 

Figure 5 presents the sample and predicted probabilities evaluated at individual co-
variates for the Poisson, gamma, Weibull, CMP, Faddy (mean only), SUE, and DUE 
models. The fertility and takeover bits datasets contain an excess of two and one out-
comes, respectively. It means there are more twos and ones in the two datasets than 
predicted by the Poisson, the gamma, etc. Figure 5(a) reveals that the models, excluding 
the SUE (γ = {2}) and DUE (γ = {2,3}) models, greatly underpredict the two outcomes 
because the third event is unusual. The SUE (γ = {2}) model has the rate between the 
second and third event differs from others. However, the SUE (γ = {2}) underpredicts 
the three outcomes because the fourth event is unusual. The DUE (γ = {2,3}) has 
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Figure 5. Sample and predicted relative frequency distributions. 

the consecutive rates between the second and fourth event differ from others. Thus, 
it leads to a considerable improvement of the predicted probabilities in the fertility 
case. Figure 5(b) shows that the models, excluding the DUE (γ = {1,2}), underpre-
dict the one outcome because the second and third events are unusual. The rate se-
quences of the SUE (γ = {0}) and DUE (γ = {1,2}) models are 2.962λ ,λ ,λ ,λ , λ ... 
and λ ,0.314λ ,0.378λ ,λ ,λ ..., respectively. The unusual events of the SUE (γ = {0}) 
and DUE (γ = {1,2}) models disagree, but they have in common the fact that λ0 > λ1. 

6 
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Tables 4 and 5 present the results from regressions for the number of children and 
number of bids data. The regression results from the gamma and Weibull models are pro-
duced by the “nlminb” function and the CMP, Faddy (mean only), SUE, and DUE mod-
els by the “optim” function with the “BFGS” method. The six models use the Poisson 
coeffcients in Tables 4 and 5 as starting values of the unknown parameters β0,β1, ...,βr, 
and the initial values of the other parameters are set to zero. The Poisson coeffcients 
are perhaps the best initial guess for these models because the models generalize the 
Poisson. We note that the estimated parameters for the SUE and DUE regression models 
reported in Tables 4 and 5 are obtained by using the analytic solution approach. These 
values are identical to that produced by the matrix-exponential method, thus verifying 
the accuracy of the Taylor series expansion approach. 

Comparing α in Table 4, these values in the gamma, Weibull, and CMP regression 
models are respectively 1.439, 1.236, and 1.429, which exceed one considerably, so there 
is an indication of underdispersion. The Faddy (mean only) also displays underdisper-
sion because α = −0.129. These four regression models with fxed α exhibit only one 
of over-, under-, and equidispersion. In other words, the dispersion types of these regres-
sion models depend only on α but not on λ . The SUE (γ = {2} and α = 0.521) regres-
sion model displays overdispersion (λ > 3.67), underdispersion (λ < 3.67), and equidis-
persion (λ = 3.67) (see Figure 4(c)). The DUE (γ = {2,3}, α2 = 0.503, and α3 = 0.687) 
regression model displays overdispersion (λ > 4.31), underdispersion (λ < 4.31), and 
equidispersion (λ = 4.31) (see Figure 4(g)). The dispersion types of the SUE (γ = {2}) 
and DUE (γ = {2, 3}) regression models depend on α2, α3, and λ . It shows the fexibility 
of the SUE and DUE regression models to allow for over-, under-, and equidispersion, 
although the shape parameters are fxed. This property does not appear in the gamma, 
Weibull, CMP, and Faddy (1997) count models. 

Figure 6 presents scatterplots of the fertility and takeover bids data. The dotted 
points are an ordered pair of the estimated mean and variance of each response vari-
able produced by the seven models. The estimated mean and variance values of these 
models have to be determined numerically directly from their probability distributions 
using a suitable truncation (n). The points below and above the 45-degree (Poisson) 
line indicate underdispersion and overdispersion, respectively. In Figures 6(a) and 6(b), 
the SUE (γ = {2}) curved (or the DUE (γ = {2,3}) curved) and Poisson lines cut each 
other at a point, which is the estimated mean equals the estimated variance. The gamma, 
Weibull, CMP, and Faddy (mean only) lines are nearly coincident, indicating a similar 
ability of these four models to handle the fertility data. It is supported by the results 
in Table 4 that the log-likelihoods of these models are very similar. According to the 
SUE (γ = {2}) and DUE (γ = {2,3}) regression models, the fertility data are divided 
into two sets. The frst set consists entirely of the underdispersed response variables, and 
the overdispersed response variables belong to the second. For the SUE (γ = {2}), the 
frst set (1151 members) is about 12.5 times bigger than the second set (92 members). 
For the DUE (γ = {2,3}), the frst set (1175 members) is about 17 times bigger than 
the second set (68 members). The gamma, Weibull, and CMP models in Figure 6(c) can 
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Figure 6. Scatterplots of estimated variances versus estimated means. 

be interpreted similarly to Figure 6(a), but the Faddy (mean only) model is different. 
The Faddy (mean only) and SUE (γ = {0}) curved lines lie nearly on top of each other 
because the rate sequence of the SUE (γ = {0}) process is very similar to the Faddy 
(mean only) process. The rate sequences of the Faddy (mean only) and SUE (γ = {0}) 
models are 2.92λ ,1.00λ ,0.98λ ,0.96λ , ... and 2.96λ ,λ , λ ,λ , ..., respectively. They are 
non-increasing, and thus the Faddy (mean only) and SUE (γ = {0}) curved lines do 
not cross the Poisson line. The DUE (γ = {1,2}) curved line crosses the Poisson line, 
indicating the takeover bids data distribution is the combination of 90 underdispersed 
and 36 overdispersed distributions. 
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5. Conclusion 

The Poisson, gamma, Weibull, CMP, and Faddy (1997) count models are well-known, 
but their underlying assumption of monotonic rate sequence limits their use in many ap-
plications. The UE count models, in contrast, are assumed that the rate sequences are 
non-monotonic, and the distributions of their interarrival times are exponential. One sig-
nifcant advantage of these new count models is the dispersion types defned by the base 
rate and the shape parameters. Hence, the UE count models can display over-, under-, 
and equidispersion, although the shape parameters are fxed numbers. In other words, 
the conditional variance and mean of the UE regression models must not be linearly re-
lated, allowing for a mixture of the over-, under-, and equidispersed distributions. The 
UE regression models are applied to the fertility and takeover bids data, and they offer 
signifcant improvements in log-likelihood compared to the above well-known regres-
sion models. For fertility data, the results show that the women’s intentions to have third 
and fourth children, unusual events, are considerably less than other children. The be-
havior of these women cannot be captured by the above well-known count models with 
monotonic rates. Even though the UE count models offer signifcant improvements, 
future studies could improve the models for better results by replacing the exponential 
distribution with a non-negative distribution such as the gamma, the Weibull, etc. 
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Appendices 

A. Derivations of SUE probability functions 

A.1. SUE (γγγ = 0 ) { }
Using Equations (3) and (8), the frst few probabilities of the SUE (γ = {0}) count model 
are obtained: 

−α0λ tP0(t) = e 
˜ t 

P1(t) =  α0λ P0(u)e−λ (t−u)du 
0 

α0e−λ t ° ˛ 
(1−α0)λ t − 1= e 

(1 − α0) 
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P2(t) =  
˜ t 

˜ P1(u)e−˜ (t−u)du 
0 

° 0e−˜ t ° 
= e(1−° 0)˜ t − 1 − (1 − ° 0)˜ t

˛ 

(1 − ° 0)2 

P3(t) =  
˜ t 

˜ P2(u)e−˜ (t−u)du 
0 

° 0e−˜ t ˜ 
((1 −° 0)˜ t)2 ° 

= e(1−° 0)˜ t −1 − (1 −° 0)˜ t − 
(1 −° 0)3 2! 

From these equations for P0(t), P1(t), P2(t), and P3(t), one can deduce that the general 
SUE (˛ = {0}) probability function might be of the form 

−° 0˜ t
˜ 

e for n = 0 ° ˛ 
i 
ˆ

° 0e−˜ t 
˙ 

1−n 

˜
Pn(t) =  ° 0)˜ t) (A.1)((1 −(1−° 0)˜ t − for n > 0.e n(1 − ° 0) i!

° ˝ 
i=0 

Inserting the Taylor series expansion of e(1−° 0)˜ t , the SUE (˛ = {0}) probability distri-
bution can be rewritten as 

˜ 
−° 0˜ te for n = 0 ° ˛ 

((1− ° 0)˜ t)i (A.2) °

˜
Pn(t) =  n −˜ t° 0 (˜ t) e for n > 0. 

(i+n)!
° ˝ 

i=0 

A.2. SUE (˛ = {˛ > 0}) 
Using Equations (3) and (8), the frst few probabilities of the SUE (˛ = {˛ > 0}) count 
model are obtained: 

P0(t) = e−˜ t 

P1(t) =  
ˇ t 

˜ P0(u)e−˜ (t−u)du = ˜ te−˜ t 

0 
. . . 

˜ t (˜ t)˛−1e−˜ t 
P̨ −1(t) =  ˜ P̨ −2(u)e−˜ (t−u)du = 

0 (˛ − 1)! 

P̨  (t) =  
˜ t 

˜ P̨ −1(u)e−°˛ ˜ (t−u)du 
0 

i 
e−˜ t 

° 
˛−1 ˛˛1 −°˛ 

˝
˜ t
˝ ˙ 

(1−°˛ )˜ t −e ˜= 
(1 − °˛ )˛ i!i=0 
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P̃ +1(t) =  
˜ t 

°˜˛ P̃  (u)e−˛ (t−u)du 
0 

i˜°˜ e−˛ t
° ˙˛˛

1 − °˜ 
˝ 

˛ t
˝ 

(1−°˜ )˛ t −e ˜= 
(1 − °˜ )˜+1 i!i=0 

From these equations for P0(t), P1(t), ..., P̃ −1(t), P̃  (t), and P̃ +1(t), one can deduce that 
the general SUE (˜ = {˜ > 0}) probability function might be of the form 

ne−˛ t(˛ t) 
for n < ˜ 

n! 

ˆ 
ˇ̌̌
ˇ̌̌
ˇ̆̌

 i 
e−˛ t n−1

° ˙˛˛
1 − °˜ 

˝
˛ t
˝ 

(1−°˜ )˛ t − ˜ for n = ˜ePn(t) =  (A.3)(1 − °˜ ) i!n 
i=0 ˇ̌̌

ˇ̌̌
ˇ̌� 

i°˜ e−˛ t n−1 
˛˛

1 − °˜ 
˝

˛ t
˝ 

(1−°˜ )˛ t − ˜ 
° ˙ 

for n > ˜.e n(1 − °˜ ) i!i=0 

Inserting the Taylor series expansion of e(1−°˜ )˛ t , the SUE (˜ = {˜ > 0}) probability 
distribution can be rewritten as 

n e−˛ t(˛ t) 
for n < ˜ 

n! 
° 

˛˛
1 −°˜ 

˝
˛ t
˝i 

n −˛ t(˛ t) e ˜ for n = ˜Pn(t) =  

ˆ 
ˇ̌̌
ˇ̌̌
ˇ̆ 

ˇ̌̌
ˇ̌̌
�̌ 

(A.4)(i+n)!i=0 
° 

˜˜
1 − °˜ 

°
˛ t
°i 

n −˛ t°˜ (˛ t) e ˜ for n > ˜. 
i=0 (i+n)! 

B. Derivations of DUE (˜̃̃ = {˜,˜ +1}) Probability Functions 

B.1. DUE (˜ = {0,1}) 
Using Equations (5) and (8), the frst few probabilities of the DUE (˜ = {0, 1}) count 
model are obtained: 

−° 0˛ tP0(t) = e 

P1(t) =  
˛ t 

° 0˛ P0(u)e−° 1˛ (t−u)du 
0 

° 0e−˛ t ˝ 
(1−° 0)˛ t − e(1−° 1)˛ t

˙ 
= e 

(° 1 − ° 0) 
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 t 
P2(t) =  α1λ P1(u)e−λ (t−u)du 

0 
 

α0α1e−λ t e(1−α0)λ t − 1 e(1−α1)λ t − 1 
=

(α1 − α0) (1 − α0) 
− 

(1 − α1) 

 t 
P3(t) =  λ P2(u)e−λ (t−u)du 

0 
 

α0α1e−λ t e(1−α0)λ t − 1 − (1 − α0)λ t e(1−α1)λ t − 1 − (1 − α1)λ t 
=

(α1 − α0) (1 − α0)2 − 
(1 − α1)2 

From these equations for P0(t), P1(t), P2(t), and P3(t), one can deduce that the general 
DUE (γ = {0,1}) probability function might be of the form 

 

 
 
 

−α0λ te for n = 0 

  
(1−α0)λ t − e(1−α1)λ te for n = 1

α0e−λ t 

(α1 − α0) 

n−2 i((1−α0)λ t)e(1−α0)λ t − ∑Pn(t) =  α0α1e−λ t i! (B.1)i=0  
 
 


n−1(α1 − α0) (1 − α0) 

n−2 
((1−α1)λ t)i e(1−α1)λ t − ∑ i!

i=0 

(1 − α1)
n−1 for n > 1.− 

Inserting the Taylor series expansion of e(1−α0)λ t and e(1−α1)λ t , the DUE (γ = {0, 1}) 
probability distribution can be rewritten as 

 
 
 

−α0λ te for n = 0 

ci (λ t)i∞

∑α0 (λ t)e−λ t for n = 1
Pn(t) =  (B.2)(i+1)!i=0   

ci (λ t)i∞

∑n −λ tα0α1 (λ t) e for n > 1,
(i+n)!i=0 

i k i−k(1 − α0) (1 − α1)where ci = ∑ . 
k=0 
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B.2. DUE (γ = {γ > 0,γ +1}) 
Using Equations (5) and (8), the frst few probabilities of the DUE (γ = {γ,γ +1}) count 
model are obtained: 

P0(t) = e−λ t 

˜ t 
P1(t) =  λ P0(u)e−λ (t−u)du = λ te−λ t 

0 

˜ t e−λ t(λ t)2 

P2(t) =  λ P1(u)e−λ (t−u)du = 
0 2! 

. . . 
˜ t (λ t)γ−1e−λ t 

Pγ−1(t) =  λ Pγ−2(u)e−λ (t−u)du = 
0 (γ − 1)! 

˜ t 
Pγ (t) =  λ Pγ−1(u)e−αγ λ (t−u)du 

0 

° ˛˛ ˝ ˝i ˙ 
e−λ t γ−1 1 − αγ λ t(1−αγ )λ t −= e ∑(1 − αγ )γ i!i=0 

˜ t 
Pγ+1(t) =  αγλ Pγ (u)e−αγ+1λ (t−u)du 

0 

γ−1 i
((1−αγ )λ t)° e(1−αγ )λ t − ∑αγ e−λ t i!

i=0 
= 

(αγ+1 − αγ ) (1 − αγ )γ 

γ−1 i 
(1−αγ+1)λ t − 

((1−αγ+1)λ t) ˙e ∑ i! 
− ˛ i=0 ˝γ1 − αγ+1 

˜ t 
Pγ+2(t) =  αγ+1λ Pγ+1(u)e−λ (t−u)du 

0 

γ i ° e(1−αγ )λ t − 
((1−αγ )λ t)∑ i!αγαγ+1e−λ t 

i=0 
= 

(αγ+1 − αγ ) (1 − αγ )γ+1 

γ i 
(1−αγ+1)λ t − 

((1−αγ+1)λ t) ˙e ∑ i!
i=0− ˛ ˝γ+11 − αγ+1 
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P̃ +3(t) =  
˜ t 

° P̃ +2(u)e−° (t−u)du 
0 

˜+1 ((1−˛˜ )° t)
i 

e(1−˛˜ )° t − ˜° 
i!˛˜˛˜+1e−° t 

i=0 
= 

(˛˜+1 − ˛˜ ) (1 − ˛˜ )˜+2 

˜+1 i 
(1−˛˜+1)° t − ((1−˛˜+1)° t)e ˜ i! 

˛
i=0− ˜

1 − ˛˜+1 
°˜+2 

From these equations for P0(t), P1(t), ..., P̃ +1(t), P̃ +2(t), and P̃ +3(t), one can deduce 
that the general DUE (˜ = {˜,˜ + 1}) probability function might be of the form 

˜ 
(° t)n e−° t ° for n < ˜° ° 

n!° ° ° ° ° ° ° 
n−1

° 
e−° t 

ˇ ˙˙
1 −˛˜ 

ˆ
° t
ˆi ˘° ° 

(1−˛˜ )° t −° 
e for n = ˜° ˜°˙

1 − ˛˜ 
ˆn i!° 

i=0
° ° ° ° ° ° ° 

n−2 i° 
((1−˛˜ )° t)

° 
(1−˛˜ )° t −

° ˇe ˜° 
i!

° 
˛˜ e−° t° 

i=0
° ° ° °˙

˛˜+1 − ˛˜ 
ˆ ˙

1 −˛˜ 
ˆn−1 ° ° ° ° ° ° ° ˛

Pn(t) =  ° ° ° ° 

in−2 ((1−˛˜+1)° t)(1−˛˜+1)° t −e ˜ i! 
˘

i=0− for n = ˜ + 1 

(B.3) 

˙
1 − ˛˜+1

ˆn−1° ° ° ° ° ° ° ° ° 
n−2 i° 

((1−˛˜ )° t)
° 

(1−˛˜ )° t −
° 

˜° ˇe i!
° 

˛˜˛˜+1e−° t° 
i=0

° ° ° °˙
˛˜+1 − ˛˜ 

ˆ ˙
1 −˛˜ 

ˆn−1 ° ° ° ° ° ° ° ° 
i° 

n−2 ((1−˛˜+1)° t)
° 

(1−˛˜+1)° t −
° ° e ˜ ˘° 

i!° 
i=0° ° − for n > ˜ + 1.° ° ˝ ˙

1 − ˛˜+1
ˆn−1 
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Inserting the Taylor series expansion of e(1−˜° )˛ t and e(1−˜°+1)˛ t , the DUE (° = {°,° +1}) 
probability distribution can be rewritten as 

n˜ 
(˛ t) e−˛ t ° 

for n < ° ° ° 
n!° ° 

i
° ° ° ° 

n −˛ t° 
(˛ t) e° ° 

˜

°
˙˙

1 − ˜° 
ˆ

˛ t
ˆ 

for n = ° 
(i +n)!° 

i=0
Pn(t) =

˛ 

ci (˛ t)i (B.4)˜

°° ° ° ° ° ° ° 

n −˛ t˜° (˛ t) e for n = ° +1 
(i +n)!i=0 

i˜

° 
° ° ° 

n −˛ t° 
˜°˜°+1 (˛ t) e° ° 

ci (˛ t) 
for n > ° +1,

(i +n)!˝ 
i=0 

i k i−k˙
1− ˜° 

ˆ ˙
1−˜°+1

ˆ
where ci = ° . 

k=0 
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